Система линейных уравнений

редактировать
Линейная система трех переменных определяет набор плоскостей. Точка пересечения - это решение.

В математике, А система линейных уравнений (или линейной системы) представляет собой набор из одного или более линейных уравнений, связанных с тем же набором переменных. Например,

3 Икс + 2 у - z знак равно 1 2 Икс - 2 у + 4 z знак равно - 2 - Икс + 1 2 у - z знак равно 0 {\ displaystyle {\ begin {alignat} {7} 3x amp;amp; \; + \; amp;amp; 2y amp;amp; \; - \; amp;amp; z amp;amp; \; = \; amp;amp; 1 amp; \\ 2x amp;amp; \; - \; amp;amp; 2y amp;amp; \; + \; amp;amp; 4z amp;amp; \; = \ ; amp;amp; - 2 amp; \\ - x amp;amp; \; + \; amp;amp; {\ tfrac {1} {2}} y amp;amp; \; - \; amp;amp; z amp;amp; \; = \; amp;amp; 0 amp; \ end {alignat}}}

представляет собой систему трех уравнений от трех переменных x, y, z. Решение для линейной системы является присвоение значений переменных, таких, что все уравнения одновременно удовлетворены. Раствора в системе выше задается

Икс знак равно 1 у знак равно - 2 z знак равно - 2 {\ displaystyle {\ begin {alignat} {2} x amp; \, = \, amp; 1 \\ y amp; \, = \, amp; - 2 \\ z amp; \, = \, amp; - 2 \ end {alignat}}}

поскольку это делает все три уравнения справедливыми. Слово «система» указывает на то, что уравнения следует рассматривать вместе, а не по отдельности.

В математике теория линейных систем является основой и фундаментальной частью линейной алгебры, предмета, который используется в большинстве разделов современной математики. Вычислительные алгоритмы нахождения решений являются важной частью численной линейной алгебры и играют важную роль в инженерии, физике, химии, информатике и экономике. Система нелинейных уравнений часто может быть аппроксимирована линейной системой (см линеаризации ), полезной техникой при принятии математической модели или компьютерного моделирования с относительно сложной системы.

Очень часто коэффициенты уравнений являются действительными или комплексными числами, и решения ищутся в одном и том же наборе чисел, но теория и алгоритмы применимы для коэффициентов и решений в любой области. Для решений в области целостности подобно кольцу из целых чисел, или в других алгебраических структурах, другие теории были разработаны, см линейного уравнения над кольцом. Целочисленное линейное программирование - это набор методов для поиска «лучшего» целочисленного решения (когда их много). Теория базиса Грёбнера предоставляет алгоритмы, когда коэффициенты и неизвестные являются полиномами. Также тропическая геометрия является примером линейной алгебры в более экзотической структуре.

СОДЕРЖАНИЕ

  • 1 Элементарные примеры
    • 1.1 Тривиальный пример
    • 1.2 Простой нетривиальный пример
  • 2 Общий вид
    • 2.1 Векторное уравнение
    • 2.2 Матричное уравнение
  • 3 Набор решений
    • 3.1 Геометрическая интерпретация
    • 3.2 Общее поведение
  • 4 свойства
    • 4.1 Независимость
    • 4.2 Последовательность
    • 4.3 Эквивалентность
  • 5 Решение линейной системы
    • 5.1 Описание решения
    • 5.2 Исключение переменных
    • 5.3 Уменьшение ряда
    • 5.4 правило Крамера
    • 5.5 Матричное решение
    • 5.6 Другие методы
  • 6 Однородные системы
    • 6.1 Набор однородных решений
    • 6.2 Связь с неоднородными системами
  • 7 См. Также
  • 8 Примечания
  • 9 ссылки
  • 10 Дальнейшее чтение
  • 11 Внешние ссылки

Элементарные примеры

Тривиальный пример

Система одного уравнения с одной неизвестной

2 Икс знак равно 4 {\ displaystyle 2x = 4}

есть решение

Икс знак равно 2. {\ displaystyle x = 2.}

Однако обычно считается, что линейная система имеет как минимум два уравнения.

Простой нетривиальный пример

Простейший вид нетривиальной линейной системы включает два уравнения и две переменные:

2 Икс + 3 у знак равно 6 4 Икс + 9 у знак равно 15 . {\ displaystyle {\ begin {alignat} {5} 2x amp;amp; \; + \; amp;amp; 3y amp;amp; \; = \; amp;amp; 6 amp; \\ 4x amp;amp; \; + \; amp;amp; 9y amp;amp; \; = \; amp;amp; 15 amp;. \ end {alignat}}}

Один из методов решения такой системы заключается в следующем. Во- первых, решить верхнее уравнение в терминах: Икс {\ displaystyle x} у {\ displaystyle y}

Икс знак равно 3 - 3 2 у . {\ displaystyle x = 3 - {\ frac {3} {2}} y.}

Теперь подставьте это выражение для x в нижнее уравнение:

4 ( 3 - 3 2 у ) + 9 у знак равно 15. {\ displaystyle 4 \ left (3 - {\ frac {3} {2}} y \ right) + 9y = 15.}

В результате получается одно уравнение, включающее только переменную. Решение дает и подставляет это обратно в уравнение для урожайности. Этот метод обобщается на системы с дополнительными переменными (см. «Исключение переменных» ниже или статью по элементарной алгебре. ) у {\ displaystyle y} у знак равно 1 {\ displaystyle y = 1} Икс {\ displaystyle x} Икс знак равно 3 / 2 {\ displaystyle x = 3/2}

Общая форма

Общая система m линейных уравнений с n неизвестными может быть записана как

а 11 Икс 1 + а 12 Икс 2 + + а 1 п Икс п знак равно б 1 а 21 год Икс 1 + а 22 Икс 2 + + а 2 п Икс п знак равно б 2     а м 1 Икс 1 + а м 2 Икс 2 + + а м п Икс п знак равно б м , {\ displaystyle {\ begin {align} a_ {11} x_ {1} + a_ {12} x_ {2} + \ cdots + a_ {1n} x_ {n} amp; = b_ {1} \\ a_ {21} x_ {1} + a_ {22} x_ {2} + \ cdots + a_ {2n} x_ {n} amp; = b_ {2} \\ amp; \ \ \ vdots \\ a_ {m1} x_ {1} + a_ {m2} x_ {2} + \ cdots + a_ {mn} x_ {n} amp; = b_ {m}, \ end {align}}}

где - неизвестные, - коэффициенты системы, - постоянные члены. Икс 1 , Икс 2 , , Икс п {\ displaystyle x_ {1}, x_ {2}, \ ldots, x_ {n}} а 11 , а 12 , , а м п {\ displaystyle a_ {11}, a_ {12}, \ ldots, a_ {mn}} б 1 , б 2 , , б м {\ displaystyle b_ {1}, b_ {2}, \ ldots, b_ {m}}

Часто коэффициенты и неизвестные являются действительными или комплексными числами, но также видны целые и рациональные числа, а также многочлены и элементы абстрактной алгебраической структуры.

Векторное уравнение

Одно чрезвычайно полезное представление состоит в том, что каждое неизвестное является весом для вектора-столбца в линейной комбинации.

Икс 1 [ а 11 а 21 год а м 1 ] + Икс 2 [ а 12 а 22 а м 2 ] + + Икс п [ а 1 п а 2 п а м п ] знак равно [ б 1 б 2 б м ] {\ displaystyle x_ {1} {\ begin {bmatrix} a_ {11} \\ a_ {21} \\\ vdots \\ a_ {m1} \ end {bmatrix}} + x_ {2} {\ begin {bmatrix} a_ {12} \\ a_ {22} \\\ vdots \\ a_ {m2} \ end {bmatrix}} + \ cdots + x_ {n} {\ begin {bmatrix} a_ {1n} \\ a_ {2n} \\\ vdots \\ a_ {mn} \ end {bmatrix}} = {\ begin {bmatrix} b_ {1} \\ b_ {2} \\\ vdots \\ b_ {m} \ end {bmatrix}}}

Это позволяет использовать весь язык и теорию векторных пространств (или, в более общем смысле, модулей ). Например, набор всех возможных линейных комбинаций векторов в левой части называется их диапазоном, и уравнения имеют решение именно тогда, когда правый вектор находится внутри этого диапазона. Если каждый вектор в этом диапазоне имеет ровно одно выражение как линейную комбинацию заданных левых векторов, то любое решение уникально. В любом случае диапазон имеет основу из линейно независимых векторов, которые действительно гарантируют ровно одно выражение; и количество векторов в этом базисе (его размерность ) не может быть больше m или n, но может быть меньше. Это важно, потому что, если у нас есть m независимых векторов, решение гарантировано независимо от правой части, а в противном случае не гарантируется.

Матричное уравнение

Векторное уравнение эквивалентно матричному уравнению вида

А Икс знак равно б {\ Displaystyle А \ mathbf {x} = \ mathbf {b}}

где A - матрица размера m × n, x - вектор-столбец с n элементами, а b - вектор-столбец с m элементами.

А знак равно [ а 11 а 12 а 1 п а 21 год а 22 а 2 п а м 1 а м 2 а м п ] , Икс знак равно [ Икс 1 Икс 2 Икс п ] , б знак равно [ б 1 б 2 б м ] {\ displaystyle A = {\ begin {bmatrix} a_ {11} amp; a_ {12} amp; \ cdots amp; a_ {1n} \\ a_ {21} amp; a_ {22} amp; \ cdots amp; a_ {2n} \\\ vdots amp; \ vdots amp; \ ddots amp; \ vdots \\ a_ {m1} amp; a_ {m2} amp; \ cdots amp; a_ {mn} \ end {bmatrix}}, \ quad \ mathbf {x} = {\ begin {bmatrix} x_ {1} \\ x_ {2} \\\ vdots \\ x_ {n} \ end {bmatrix}}, \ quad \ mathbf {b} = {\ begin {bmatrix} b_ {1} \\ b_ {2} \\\ vdots \ \ b_ {m} \ end {bmatrix}}}

Количество векторов в основе диапазона теперь выражается как ранг матрицы.

Набор решений

Множество решений для уравнений x - y = −1 и 3 x + y = 9 - это единственная точка (2, 3).

Решением линейной системы является присвоением значений переменных х 1, х 2,..., х п, такой, что каждый из уравнений удовлетворяются. Множество всех возможных решений называется множество решений.

Линейная система может вести себя одним из трех возможных способов:

  1. У системы бесконечно много решений.
  2. Система имеет единое уникальное решение.
  3. У системы нет решения.

Геометрическая интерпретация

Для системы с участием двух переменных ( х и Y), каждое линейное уравнение определяет линию на ху - плоскость. Поскольку решение линейной системы должно удовлетворять всем уравнениям, набор решений является пересечением этих линий и, следовательно, является линией, одной точкой или пустым набором.

Для трех переменных каждое линейное уравнение определяет плоскость в трехмерном пространстве, а набор решений - это пересечение этих плоскостей. Таким образом, набор решений может быть плоскостью, линией, отдельной точкой или пустым набором. Например, поскольку три параллельные плоскости не имеют общей точки, набор решений их уравнений пуст; система решений уравнений трех пересекающихся в точке плоскостей является единственной точкой; если три плоскости проходят через две точки, их уравнения имеют как минимум два общих решения; на самом деле множество решений бесконечно и состоит из всех прямых, проходящих через эти точки.

Для n переменных каждое линейное уравнение определяет гиперплоскость в n- мерном пространстве. Множество решений является пересечением этих гиперплоскостей и представляет собой плоскость, которая может иметь любую размерность меньше n.

Общее поведение

Множество решений для двух уравнений с тремя переменными, как правило, представляет собой линию.

В общем, поведение линейной системы определяется соотношением между количеством уравнений и количеством неизвестных. Здесь «в целом» означает, что для конкретных значений коэффициентов уравнений может иметь место различное поведение.

  • В общем, система с меньшим количеством уравнений, чем неизвестных, имеет бесконечно много решений, но может не иметь решения. Такая система известна как недоопределенная система.
  • В общем, система с таким же количеством уравнений и неизвестных имеет одно единственное решение.
  • В общем, система с большим количеством уравнений, чем неизвестных, не имеет решения. Такая система также известна как переопределенная система.

В первом случае размерность множества решений, как правило, равна n - m, где n - количество переменных, а m - количество уравнений.

Следующие рисунки иллюстрируют эту трихотомию в случае двух переменных:

One Line.svg Two Lines.svg Three Lines.svg
Одно уравнение Два уравнения Три уравнения

Первая система имеет бесконечно много решений, а именно все точки на синей линии. Вторая система имеет единственное единственное решение, а именно пересечение двух линий. Третья система не имеет решений, поскольку три линии не имеют общей точки.

Следует иметь в виду, что на рисунках выше показан только самый частый случай (общий случай). Система из двух уравнений и двух неизвестных может не иметь решения (если две прямые параллельны) или система из трех уравнений и двух неизвестных может быть разрешимой (если три линии пересекаются в одной точке).

Система линейных уравнений ведет себя иначе, чем в общем случае, если уравнения линейно зависимы, или если она несовместима и имеет не больше уравнений, чем неизвестных.

Характеристики

Независимость

Уравнения линейной системы независимы, если ни одно из уравнений не может быть выведено алгебраически из других. Когда уравнения независимы, каждое уравнение содержит новую информацию о переменных, и удаление любого из уравнений увеличивает размер набора решений. Для линейных уравнений логическая независимость - это то же самое, что и линейная независимость.

Уравнения x - 2 y = −1, 3 x + 5 y = 8 и 4 x + 3 y = 7 линейно зависимы.

Например, уравнения

3 Икс + 2 у знак равно 6 а также 6 Икс + 4 у знак равно 12 {\ Displaystyle 3x + 2y = 6 \; \; \; \; {\ text {and}} \; \; \; \; 6x + 4y = 12}

не являются независимыми - они представляют собой одно и то же уравнение при масштабировании в два раза, и они будут давать идентичные графики. Это пример эквивалентности в системе линейных уравнений.

Для более сложного примера уравнения

Икс - 2 у знак равно - 1 3 Икс + 5 у знак равно 8 4 Икс + 3 у знак равно 7 {\ displaystyle {\ begin {alignat} {5} x amp;amp; \; - \; amp;amp; 2y amp;amp; \; = \; amp;amp; - 1 amp; \\ 3x amp;amp; \; + \; amp;amp; 5y amp;amp; \; = \; amp;amp; 8 amp; \\ 4x amp;amp; \; + \; amp;amp; 3y amp;amp; \; = \; amp;amp; 7 amp; \ end {alignat}}}

не являются независимыми, потому что третье уравнение является суммой двух других. Действительно, любое из этих уравнений может быть получено из двух других, и любое из уравнений может быть удалено, не влияя на набор решений. Графики этих уравнений представляют собой три линии, пересекающиеся в одной точке.

Последовательность

См. Также: Непротиворечивые и непоследовательные уравнения. Уравнения 3 x + 2 y = 6 и 3 x + 2 y = 12 несовместимы.

Линейная система несовместна, если у нее нет решения, в противном случае она называется согласованной. Когда система несовместима, из уравнений можно вывести противоречие, которое всегда можно переписать как утверждение 0 = 1.

Например, уравнения

3 Икс + 2 у знак равно 6 а также 3 Икс + 2 у знак равно 12 {\ Displaystyle 3x + 2y = 6 \; \; \; \; {\ text {and}} \; \; \; \; 3x + 2y = 12}

непоследовательны. Фактически, вычитая первое уравнение из второго и умножая обе части результата на 1/6, мы получаем 0 = 1. Графики этих уравнений на плоскости xy представляют собой пару параллельных линий.

Три линейных уравнения могут быть несовместными, даже если любые два из них согласованы вместе. Например, уравнения

Икс + у знак равно 1 2 Икс + у знак равно 1 3 Икс + 2 у знак равно 3 {\ displaystyle {\ begin {alignat} {7} x amp;amp; \; + \; amp;amp; y amp;amp; \; = \; amp;amp; 1 amp; \\ 2x amp;amp; \; + \; amp;amp; y amp;amp; \; = \; amp;amp; 1 amp; \\ 3x amp;amp; \; + \; amp;amp; 2y amp;amp; \ ; = \; amp;amp; 3 amp; \ end {alignat}}}

непоследовательны. Сложение первых двух уравнений дает 3 x + 2 y = 2, которые можно вычесть из третьего уравнения и получить 0 = 1. Любые два из этих уравнений имеют общее решение. То же явление может иметь место для любого количества уравнений.

В общем случае несоответствия возникают, если левые части уравнений в системе линейно зависимы, а постоянные члены не удовлетворяют соотношению зависимости. Система уравнений, левые части которой линейно независимы, всегда непротиворечива.

Положив это по- другому, в соответствии с теоремой Руш-Капелл, любая система уравнений (переопределено или иначе) противоречива, если ранг в дополненной матрице больше, чем ранг матрицы коэффициентов. Если, с другой стороны, ранги этих двух матриц равны, система должна иметь хотя бы одно решение. Решение уникально тогда и только тогда, когда ранг равен количеству переменных. В противном случае общее решение имеет k свободных параметров, где k - разница между числом переменных и рангом; следовательно, в таком случае решений бесконечно много. Ранг системы уравнений (т. Е. Ранг расширенной матрицы) никогда не может быть выше, чем [количество переменных] + 1, что означает, что система с любым количеством уравнений всегда может быть сведена к системе, которая имеет количество независимых уравнений, не более чем [количество переменных] + 1.

Эквивалентность

Две линейные системы, использующие один и тот же набор переменных, эквивалентны, если каждое из уравнений второй системы может быть выведено алгебраически из уравнений первой системы, и наоборот. Две системы эквивалентны, если либо обе несовместны, либо каждое уравнение каждой из них является линейной комбинацией уравнений другой. Отсюда следует, что две линейные системы эквивалентны тогда и только тогда, когда они имеют одно и то же множество решений.

Решение линейной системы

Есть несколько алгоритмов для решения системы линейных уравнений.

Описание решения

Когда множество решений конечно, оно сводится к одному элементу. В этом случае единственное решение описывается, например, последовательностью уравнений, левые части которых являются именами неизвестных, а правые части - соответствующими значениями. Когда порядок неизвестных был установлен, например алфавитный порядок, решение можно описать как вектор значений, как в предыдущем примере. ( Икс знак равно 3 , у знак равно - 2 , z знак равно 6 ) {\ Displaystyle (х = 3, \; y = -2, \; z = 6)} ( 3 , - 2 , 6 ) {\ Displaystyle (3, \, - 2, \, 6)}

Чтобы описать набор с бесконечным числом решений, обычно некоторые из переменных обозначаются как свободные (или независимые, или как параметры), что означает, что им разрешено принимать любое значение, в то время как остальные переменные зависят от значений свободные переменные.

Например, рассмотрим следующую систему:

Икс + 3 у - 2 z знак равно 5 3 Икс + 5 у + 6 z знак равно 7 {\ displaystyle {\ begin {alignat} {7} x amp;amp; \; + \; amp;amp; 3y amp;amp; \; - \; amp;amp; 2z amp;amp; \; = \; amp;amp; 5 amp; \\ 3x amp;amp; \; + \; amp;amp; 5y amp;amp; \; + \; amp;amp; 6z amp;amp; \; = \ ; amp;amp; 7 amp; \ end {alignat}}}

Набор решений этой системы можно описать следующими уравнениями:

Икс знак равно - 7 z - 1 а также у знак равно 3 z + 2 . {\ Displaystyle х = -7z-1 \; \; \; \; {\ text {and}} \; \; \; \; y = 3z + 2 {\ text {.}}

Здесь z - свободная переменная, а x и y зависят от z. Любую точку в наборе решений можно получить, сначала выбрав значение для z, а затем вычислив соответствующие значения для x и y.

Каждая свободная переменная дает пространству решений одну степень свободы, количество которой равно размерности множества решений. Например, набор решений для приведенного выше уравнения представляет собой линию, поскольку точку в наборе решений можно выбрать, указав значение параметра z. Бесконечное решение более высокого порядка может описывать плоскость или многомерное множество.

Различный выбор свободных переменных может привести к разному описанию одного и того же набора решений. Например, решение вышеуказанных уравнений можно альтернативно описать следующим образом:

у знак равно - 3 7 Икс + 11 7 а также z знак равно - 1 7 Икс - 1 7 . {\ displaystyle y = - {\ frac {3} {7}} x + {\ frac {11} {7}} \; \; \; \; {\ text {and}} \; \; \; \; z = - {\ frac {1} {7}} x - {\ frac {1} {7}} {\ text {.}}}

Здесь x - свободная переменная, а y и z - зависимые.

Исключение переменных

Самый простой метод решения системы линейных уравнений - многократное исключение переменных. Этот метод можно описать следующим образом:

  1. В первом уравнении решите одну из переменных через другие.
  2. Подставьте это выражение в остальные уравнения. Это дает систему уравнений с одним уравнением меньше и одним меньше неизвестным.
  3. Повторяйте, пока система не сведется к одному линейному уравнению.
  4. Решите это уравнение, а затем выполните обратную замену, пока не будет найдено полное решение.

Например, рассмотрим следующую систему:

Икс + 3 у - 2 z знак равно 5 3 Икс + 5 у + 6 z знак равно 7 2 Икс + 4 у + 3 z знак равно 8 {\ displaystyle {\ begin {alignat} {7} x amp;amp; \; + \; amp;amp; 3y amp;amp; \; - \; amp;amp; 2z amp;amp; \; = \; amp;amp; 5 amp; \\ 3x amp;amp; \; + \; amp;amp; 5y amp;amp; \; + \; amp;amp; 6z amp;amp; \; = \ ; amp;amp; 7 amp; \\ 2x amp;amp; \; + \; amp;amp; 4y amp;amp; \; + \; amp;amp; 3z amp;amp; \; = \; amp;amp; 8 amp; \ end {alignat}}}

Решение первого уравнения относительно x дает x = 5 + 2 z - 3 y, а включение этого во второе и третье уравнение дает

- 4 у + 12 z знак равно - 8 - 2 у + 7 z знак равно - 2 {\ displaystyle {\ begin {alignat} {5} -4y amp;amp; \; + \; amp;amp; 12z amp;amp; \; = \; amp;amp; - 8 amp; \\ - 2y amp;amp; \; + \; amp;amp; 7z amp;amp; \; = \; amp;amp; - 2 amp; \ end {выровнено }}}

Решение первого из этих уравнений относительно y дает y = 2 + 3 z, а включение его во второе уравнение дает z = 2. Теперь у нас есть:

Икс знак равно 5 + 2 z - 3 у у знак равно 2 + 3 z z знак равно 2 {\ displaystyle {\ begin {alignat} {7} x amp;amp; \; = \; amp;amp; 5 amp;amp; \; + \; amp;amp; 2z amp;amp; \; - \; amp;amp; 3y amp; \\ y amp;amp; \; = \; amp;amp; 2 amp;amp; \; + \; amp;amp; 3z amp;amp;amp;amp;amp; \\ z amp;amp; \ ; = \; amp;amp; 2 amp;amp;amp;amp;amp;amp;amp;amp;amp; \ end {alignat}}}

Подстановка z = 2 во второе уравнение дает y = 8, а замена z = 2 и y = 8 в первое уравнение дает x = −15. Следовательно, набором решений является единственная точка ( x, y, z) = (−15, 8, 2).

Уменьшение ряда

Основная статья: Гауссово исключение

При сокращении строк (также известном как исключение Гаусса) линейная система представляется в виде расширенной матрицы :

[ 1 3 - 2 5 3 5 6 7 2 4 3 8 ] . {\ displaystyle \ left [{\ begin {array} {rrr | r} 1 amp; 3 amp; -2 amp; 5 \\ 3 amp; 5 amp; 6 amp; 7 \\ 2 amp; 4 amp; 3 amp; 8 \ end {array}} \ right] {\ text {.}}}

Затем эта матрица модифицируется с использованием элементарных операций со строками до тех пор, пока она не достигнет уменьшенной формы эшелона строк. Есть три типа операций с элементарными строками:

Тип 1: поменяйте местами две строки.
Тип 2: умножьте строку на ненулевой скаляр.
Тип 3: добавьте к одной строке скалярное число, кратное другой.

Поскольку эти операции обратимы, полученная расширенная матрица всегда представляет собой линейную систему, эквивалентную исходной.

Существует несколько конкретных алгоритмов сокращения строк расширенной матрицы, простейшие из которых - исключение Гаусса и исключение Гаусса – Жордана. Следующее вычисление показывает применение метода исключения Гаусса – Жордана к матрице выше:

[ 1 3 - 2 5 3 5 6 7 2 4 3 8 ] [ 1 3 - 2 5 0 - 4 12 - 8 2 4 3 8 ] [ 1 3 - 2 5 0 - 4 12 - 8 0 - 2 7 - 2 ] [ 1 3 - 2 5 0 1 - 3 2 0 - 2 7 - 2 ] [ 1 3 - 2 5 0 1 - 3 2 0 0 1 2 ] [ 1 3 - 2 5 0 1 0 8 0 0 1 2 ] [ 1 3 0 9 0 1 0 8 0 0 1 2 ] [ 1 0 0 - 15 0 1 0 8 0 0 1 2 ] . {\ displaystyle {\ begin {align} \ left [{\ begin {array} {rrr | r} 1 amp; 3 amp; -2 amp; 5 \\ 3 amp; 5 amp; 6 amp; 7 \\ 2 amp; 4 amp; 3 amp; 8 \ end {array}} \ right] amp; \ sim \ left [{\ begin {array} {rrr | r} 1 amp; 3 amp; -2 amp; 5 \\ 0 amp; -4 amp; 12 amp; -8 \\ 2 amp; 4 amp; 3 amp; 8 \ end {array}} \ right] \ sim \ left [{\ begin {array} {rrr | r} 1 amp; 3 amp; -2 amp; 5 \ \ 0 amp; -4 amp; 12 amp; -8 \\ 0 amp; -2 amp; 7 amp; -2 \ end {array}} \ right] \ sim \ left [{\ begin {array} {rrr | r} 1 amp; 3 amp; -2 amp; 5 \\ 0 amp; 1 amp; -3 amp; 2 \\ 0 amp; - 2 amp; 7 amp; -2 \ end {array}} \ right] \\ amp; \ sim \ left [{\ begin {array} {rrr | r} 1 amp; 3 amp; -2 amp; 5 \\ 0 amp; 1 amp; -3 amp; 2 \\ 0 amp; 0 amp; 1 amp; 2 \ end {array}} \ right ] \ sim \ left [{\ begin {array} {rrr | r} 1 amp; 3 amp; -2 amp; 5 \\ 0 amp; 1 amp; 0 amp; 8 \\ 0 amp; 0 amp; 1 amp; 2 \ end {array}} \ right] \ sim \ left [{\ begin {array} {rrr | r } 1 amp; 3 amp; 0 amp; 9 \\ 0 amp; 1 amp; 0 amp; 8 \\ 0 amp; 0 amp; 1 amp; 2 \ end {array}} \ right] \ sim \ left [{\ begin {array} {rrr | r} 1 amp; 0 amp; 0 amp; -15 \\ 0 amp; 1 amp; 0 amp; 8 \\ 0 amp; 0 amp; 1 amp; 2 \ end {array}} \ right ]. \ end {выровнен}}}

Последняя матрица представлена ​​в виде сокращенного эшелона строк и представляет систему x = −15, y = 8, z = 2. Сравнение с примером алгебраического исключения переменных из предыдущего раздела показывает, что эти два метода фактически одинаковы; разница заключается в том, как записываются вычисления.

Правило Крамера

Основная статья: правило Крамера

Правило Крамера - это явная формула для решения системы линейных уравнений, в которой каждая переменная задается частным двух определителей. Например, решение системы

Икс + 3 у - 2 z знак равно 5 3 Икс + 5 у + 6 z знак равно 7 2 Икс + 4 у + 3 z знак равно 8 {\ displaystyle {\ begin {alignat} {7} x amp; \; + amp; \; 3y amp; \; - amp; \; 2z amp; \; = amp; \; 5 \\ 3x amp; \; + amp; \; 5y amp; \; + amp; \; 6z amp; \; = amp; \; 7 \\ 2x amp; \; + amp; \; 4y amp; \; + amp; \; 3z amp; \; = amp; \; 8 \ end {alignat}}}

дан кем-то

Икс знак равно | 5 3 - 2 7 5 6 8 4 3 | | 1 3 - 2 3 5 6 2 4 3 | , у знак равно | 1 5 - 2 3 7 6 2 8 3 | | 1 3 - 2 3 5 6 2 4 3 | , z знак равно | 1 3 5 3 5 7 2 4 8 | | 1 3 - 2 3 5 6 2 4 3 | . {\ displaystyle x = {\ frac {\, {\ begin {vmatrix} 5 amp; 3 amp; -2 \\ 7 amp; 5 amp; 6 \\ 8 amp; 4 amp; 3 \ end {vmatrix}} \,} {\, {\ begin {vmatrix} 1 amp; 3 amp; -2 \\ 3 amp; 5 amp; 6 \\ 2 amp; 4 amp; 3 \ end {vmatrix}} \,}}, \; \; \; \; y = {\ frac {\, {\ begin {vmatrix} 1 amp; 5 amp; -2 \\ 3 amp; 7 amp; 6 \\ 2 amp; 8 amp; 3 \ end {vmatrix} } \,} {\, {\ begin {vmatrix} 1 amp; 3 amp; -2 \\ 3 amp; 5 amp; 6 \\ 2 amp; 4 amp; 3 \ end {vmatrix}} \,}}, \; \; \; \; z = {\ frac {\, { \ begin {vmatrix} 1 amp; 3 amp; 5 \\ 3 amp; 5 amp; 7 \\ 2 amp; 4 amp; 8 \ end {vmatrix}} \,} {\, {\ begin {vmatrix} 1 amp; 3 amp; -2 \\ 3 amp; 5 amp; 6 \\ 2 amp; 4 amp; 3 \ end {vmatrix}} \,}}. }

Для каждой переменной знаменатель является определителем матрицы коэффициентов, а числитель - определителем матрицы, в которой один столбец заменен вектором постоянных членов.

Хотя правило Крамера важно теоретически, оно не имеет практического значения для больших матриц, поскольку вычисление больших детерминантов несколько громоздко. (Действительно, большие детерминанты легче всего вычислить с помощью сокращения строк.) Кроме того, правило Крамера имеет очень плохие числовые свойства, что делает его непригодным для надежного решения даже небольших систем, если операции не выполняются в рациональной арифметике с неограниченной точностью.

Матричное решение

Если система уравнений выражена в матричной форме, весь набор решений также может быть выражен в матричной форме. Если матрица A квадратная (имеет m строк и n = m столбцов) и имеет полный ранг (все m строк независимы), то система имеет единственное решение, задаваемое формулой А Икс знак равно б {\ Displaystyle А \ mathbf {x} = \ mathbf {b}}

Икс знак равно А - 1 б {\ Displaystyle \ mathbf {x} = A ^ {- 1} \ mathbf {b}}

где есть обратная из A. В более общем плане, независимо от того, m = n или нет, и независимо от ранга A, все решения (если таковые существуют) даются с использованием псевдообратного выражения Мура-Пенроуза для A, обозначаемого следующим образом: А - 1 {\ displaystyle A ^ {- 1}} А + {\ displaystyle A ^ {+}}

Икс знак равно А + б + ( я - А + А ) ш {\ displaystyle \ mathbf {x} = A ^ {+} \ mathbf {b} + \ left (IA ^ {+} A \ right) \ mathbf {w}}

где - вектор свободных параметров, который пробегает все возможные векторы n × 1. Необходимым и достаточным условием для существования любого решения (й) является то, что потенциальное решение, полученное с помощью, удовлетворяет - то есть, если это условие не выполняется, система уравнений несовместима и не имеет решения. Если условие выполняется, система непротиворечива и существует хотя бы одно решение. Например, в вышеупомянутом случае, когда A квадратное и полного ранга, просто равно, и уравнение общего решения упрощается до ш {\ displaystyle \ mathbf {w}} ш знак равно 0 {\ Displaystyle \ mathbf {ш} = \ mathbf {0}} А Икс знак равно б {\ Displaystyle А \ mathbf {x} = \ mathbf {b}} А А + б знак равно б . {\ displaystyle AA ^ {+} \ mathbf {b} = \ mathbf {b}.} А + {\ displaystyle A ^ {+}} А - 1 {\ displaystyle A ^ {- 1}}

Икс знак равно А - 1 б + ( я - А - 1 А ) ш знак равно А - 1 б + ( я - я ) ш знак равно А - 1 б {\ displaystyle \ mathbf {x} = A ^ {- 1} \ mathbf {b} + \ left (IA ^ {- 1} A \ right) \ mathbf {w} = A ^ {- 1} \ mathbf {b } + \ left (II \ right) \ mathbf {w} = A ^ {- 1} \ mathbf {b}}

как указывалось ранее, где полностью выпал из решения, оставив только одно решение. В других случаях, однако, остается и, следовательно, бесконечное количество потенциальных значений свободного вектора параметров дает бесконечное количество решений уравнения. ш {\ displaystyle \ mathbf {w}} ш {\ displaystyle \ mathbf {w}} ш {\ displaystyle \ mathbf {w}}

Другие методы

В то время как системы из трех или четырех уравнений могут быть легко решены вручную (см. Краковский ), компьютеры часто используются для более крупных систем. Стандартный алгоритм решения системы линейных уравнений основан на методе исключения Гаусса с некоторыми изменениями. Во-первых, важно избегать деления на маленькие числа, так как это может привести к неточным результатам. Это можно сделать, при необходимости переупорядочив уравнения - процесс, известный как поворот. Во- вторых, алгоритм точно не делать исключения Гаусса, но он вычисляет разложение LU матрицы A. В основном это организационный инструмент, но он работает намного быстрее, если нужно решать несколько систем с одной и той же матрицей A, но с разными векторами b.

Если матрица A имеет особую структуру, ее можно использовать для получения более быстрых или более точных алгоритмов. Например, системы с симметричной положительно определенной матрицей могут быть решены в два раза быстрее с помощью разложения Холецкого. Рекурсия Левинсона - это быстрый метод для матриц Теплица. Специальные методы существуют также для матриц с большим количеством нулевых элементов (так называемые разреженные матрицы ), которые часто используются в приложениях.

Совершенно другой подход часто используется для очень больших систем, которые в противном случае потребовали бы слишком много времени или памяти. Идея состоит в том, чтобы начать с начального приближения к решению (которое совсем не обязательно должно быть точным) и изменить это приближение в несколько шагов, чтобы приблизить его к истинному решению. Если приближение достаточно точное, оно считается решением системы. Это приводит к классу итерационных методов. Для некоторых разреженных матриц введение случайности увеличивает скорость итерационных методов.

Также существует квантовый алгоритм для линейных систем уравнений.

Однородные системы

См. Также: Однородное дифференциальное уравнение

Система линейных уравнений однородна, если все постоянные члены равны нулю:

а 11 Икс 1 + а 12 Икс 2 + + а 1 п Икс п знак равно 0 а 21 год Икс 1 + а 22 Икс 2 + + а 2 п Икс п знак равно 0   а м 1 Икс 1 + а м 2 Икс 2 + + а м п Икс п знак равно 0. {\ displaystyle {\ begin {alignat} {7} a_ {11} x_ {1} amp;amp; \; + \; amp;amp; a_ {12} x_ {2} amp;amp; \; + \ cdots + \; amp;amp; a_ {1n} x_ {n } amp;amp; \; = \; amp;amp;amp; 0 \\ a_ {21} x_ {1} amp;amp; \; + \; amp;amp; a_ {22} x_ {2} amp;amp; \; + \ cdots + \; amp;amp; a_ {2n} x_ {n} amp;amp; \; = \; amp;amp;amp; 0 \\ amp;amp;amp;amp;amp;amp;amp;amp;amp;amp; \ vdots \; \ amp;amp;amp; \\ a_ {m1} x_ {1} amp;amp; \; + \; amp;amp; a_ {m2} x_ {2} amp;amp; \; + \ cdots + \; amp;amp; a_ { mn} x_ {n} amp;amp; \; = \; amp;amp;amp; 0. \\\ конец {выровненный}}}

Однородная система эквивалентна матричному уравнению вида

А Икс знак равно 0 {\ Displaystyle А \ mathbf {x} = \ mathbf {0}}

где A - матрица размера m × n, x - вектор-столбец с n элементами, а 0 - нулевой вектор с m элементами.

Набор однородных растворов

Каждая однородная система имеет по крайней мере одно решение, известное как нулевое (или тривиальное) решение, которое получается путем присвоения значения нуля каждой из переменных. Если система имеет невырожденную матрицу ( det ( A) 0), то это также единственное решение. Если система имеет сингулярную матрицу, то существует множество решений с бесконечным числом решений. Этот набор решений имеет следующие дополнительные свойства:

  1. Если u и v - два вектора, представляющие решения однородной системы, то векторная сумма u + v также является решением системы.
  2. Если u - вектор, представляющий решение однородной системы, а r - любой скаляр, то r u также является решением системы.

Это в точности те свойства, которые необходимы для того, чтобы набор решений был линейным подпространством в R n. В частности, множество решений для однородной системы является такой же, как нулевое пространство соответствующей матрицы A. Численные решения однородной системы могут быть найдены с помощью сингулярного разложения.

Отношение к неоднородным системам

Существует тесная связь между решениями линейной системы и решениями соответствующей однородной системы:

А Икс знак равно б а также А Икс знак равно 0 . {\ displaystyle A \ mathbf {x} = \ mathbf {b} \ qquad {\ text {and}} \ qquad A \ mathbf {x} = \ mathbf {0}.}

В частности, если p - любое конкретное решение линейной системы A x = b, то весь набор решений можно описать как

{ п + v : v  есть ли какое-либо решение  А Икс знак равно 0 } . {\ displaystyle \ left \ {\ mathbf {p} + \ mathbf {v}: \ mathbf {v} {\ text {- любое решение для}} A \ mathbf {x} = \ mathbf {0} \ right \}.}

С геометрической точки зрения это означает, что набор решений для A x = b является переводом набора решений для A x = 0. В частности, плоскость для первой системы может быть получена путем переноса линейного подпространства для однородной системы на вектор p.

Это рассуждение применимо только в том случае, если система A x = b имеет хотя бы одно решение. Это происходит тогда и только тогда, когда вектор Ь лежит в изображении от линейного преобразования A.

Смотрите также

Примечания

использованная литература

дальнейшее чтение

  • Акслер, Шелдон Джей (1997), Linear Algebra Done Done Right (2-е изд.), Springer-Verlag, ISBN   0-387-98259-0
  • Лэй, Дэвид К. (22 августа 2005 г.), Линейная алгебра и ее приложения (3-е изд.), Аддисон Уэсли, ISBN   978-0-321-28713-7
  • Мейер, Карл Д. (15 февраля 2001 г.), Матричный анализ и прикладная линейная алгебра, Общество промышленной и прикладной математики (SIAM), ISBN   978-0-89871-454-8, Архивируются с оригинала на 1 марта 2001
  • Пул, Дэвид (2006), Линейная алгебра: современное введение (2-е изд.), Брукс / Коул, ISBN   0-534-99845-3
  • Антон, Ховард (2005), Элементарная линейная алгебра (прикладная версия) (9-е изд.), Wiley International
  • Леон, Стивен Дж. (2006), Линейная алгебра с приложениями (7-е изд.), Пирсон Прентис Холл
  • Стрэнг, Гилберт (2005), Линейная алгебра и ее приложения

внешние ссылки

  • СМИ, связанные с Системой линейных уравнений на Викискладе?
Последняя правка сделана 2023-03-20 10:43:04
Содержание доступно по лицензии CC BY-SA 3.0 (если не указано иное).
Обратная связь: support@alphapedia.ru
Соглашение
О проекте