Иметь в виду

редактировать
Эта статья о математической концепции. Для использования в других целях, см Среднее (значения). Чтобы узнать о состоянии подлости или жестокости, см. Подлость. Для более широкого освещения этой темы см. Среднее.

Есть несколько видов средней в области математики, особенно в статистике.

Для набора данных, то среднее арифметическое, также известный как среднее арифметическое, является центральным значением конечного множества чисел: в частности, сумма значений, деленная на число значений. Среднее арифметическое набора чисел x 1, x 2,..., x n обычно обозначается. Если набор данных был основан на серии наблюдений, полученных путем выборки из статистической совокупности, среднее арифметическое - это среднее значение выборки (обозначено), чтобы отличить его от среднего или ожидаемого значения базового распределения, среднего значения совокупности (обозначено или). Икс ¯ {\ displaystyle {\ bar {x}}} Икс ¯ {\ displaystyle {\ bar {x}}} μ {\ displaystyle \ mu} μ Икс {\ displaystyle \ mu _ {x}}

Помимо вероятности и статистики, в геометрии и математическом анализе часто используется широкий спектр других понятий среднего ; примеры приведены ниже.

СОДЕРЖАНИЕ
  • 1 Виды средств
    • 1.1 Пифагорейские средства
      • 1.1.1 Среднее арифметическое (AM)
      • 1.1.2 Среднее геометрическое (GM)
      • 1.1.3 Среднее гармоническое (HM)
      • 1.1.4 Связь между AM, GM и HM
    • 1.2 Статистическое местоположение
      • 1.2.1 Среднее значение распределения вероятностей
    • 1.3 Обобщенные средства
      • 1.3.1 Среднее значение мощности
      • 1.3.2 f -среднее
    • 1.4 Средневзвешенное арифметическое
    • 1.5 Усеченное среднее
    • 1.6 Межквартильное среднее
    • 1.7 Среднее значение функции
    • 1.8 Среднее значение углов и циклических величин
    • 1.9 Фреше среднее
    • 1.10 Правило Свонсона
    • 1.11 Другие средства
  • 2 См. Также
  • 3 Примечания
  • 4 ссылки
Виды средств

Пифагорейские средства

Основная статья: пифагорейские средства

Среднее арифметическое (AM)

Основная статья: Среднее арифметическое

Среднее арифметическое (или просто среднее) из списка чисел, является суммой всех чисел, разделенное на количество чисел. Аналогичным образом, среднее значение выборки, обычно обозначаемое как, представляет собой сумму значений выборки, деленную на количество элементов в выборке. Икс 1 , Икс 2 , , Икс п {\ Displaystyle x_ {1}, x_ {2}, \ ldots, x_ {n}} Икс ¯ {\ displaystyle {\ bar {x}}}

Икс ¯ знак равно 1 п ( я знак равно 1 п Икс я ) знак равно Икс 1 + Икс 2 + + Икс п п {\ displaystyle {\ bar {x}} = {\ frac {1} {n}} \ left (\ sum _ {i = 1} ^ {n} {x_ {i}} \ right) = {\ frac { x_ {1} + x_ {2} + \ cdots + x_ {n}} {n}}}

Например, среднее арифметическое пяти значений: 4, 36, 45, 50, 75 равно:

4 + 36 + 45 + 50 + 75 5 знак равно 210 5 знак равно 42. {\ displaystyle {\ frac {4 + 36 + 45 + 50 + 75} {5}} = {\ frac {210} {5}} = 42.}

Среднее геометрическое (GM)

Основная статья: среднее геометрическое

Геометрическое среднее представляет собой среднее, что является полезным для наборов положительных чисел, которые интерпретируются в соответствии с их продуктом (как в случае с темпами роста), а не их суммы (как в случае с среднеарифметического):

Икс ¯ знак равно ( я знак равно 1 п Икс я ) 1 п знак равно ( Икс 1 Икс 2 Икс п ) 1 п {\ displaystyle {\ bar {x}} = \ left (\ prod _ {i = 1} ^ {n} {x_ {i}} \ right) ^ {\ frac {1} {n}} = \ left ( x_ {1} x_ {2} \ cdots x_ {n} \ right) ^ {\ frac {1} {n}}}

Например, среднее геометрическое пяти значений: 4, 36, 45, 50, 75 равно:

( 4 × 36 × 45 × 50 × 75 ) 1 5 знак равно 24 300 000 5 знак равно 30. {\ displaystyle (4 \ times 36 \ times 45 \ times 50 \ times 75) ^ {\ frac {1} {5}} = {\ sqrt [{5}] {24 \; 300 \; 000}} = 30.}

Гармоническое среднее (HM)

Гармоническое среднее является средним, который является полезным для наборов чисел, которые определяются по отношению к некоторой единице, как и в случае скорости (т.е. расстояния за единицу времени):

Икс ¯ знак равно п ( я знак равно 1 п 1 Икс я ) - 1 {\ displaystyle {\ bar {x}} = n \ left (\ sum _ {i = 1} ^ {n} {\ frac {1} {x_ {i}}} \ right) ^ {- 1}}

Например, гармоническое среднее пяти значений: 4, 36, 45, 50, 75 равно

5 1 4 + 1 36 + 1 45 + 1 50 + 1 75 знак равно 5 1 3 знак равно 15. {\ displaystyle {\ frac {5} {{\ tfrac {1} {4}} + {\ tfrac {1} {36}} + {\ tfrac {1} {45}} + {\ tfrac {1} { 50}} + {\ tfrac {1} {75}}}} = {\ frac {5} {\; {\ tfrac {1} {3}} \;}} = 15.}

Отношения между AM, GM и HM

Доказательство без слов в неравенство арифметических и средних геометрических :
PR - представляет собой диаметр окружности с центром на О; его радиус АО является средним арифметическим из и б. Используя теорему о среднем геометрическом, высота GQ треугольника PGR является средним геометрическим. Для любого коэффициента а: Ь, АО ≥ GQ. Основная статья: Неравенство средних арифметических и геометрических

AM, GM и HM удовлетворяют этим неравенствам:

А M грамм M ЧАС M {\ Displaystyle \ mathrm {AM} \ geq \ mathrm {GM} \ geq \ mathrm {HM} \,}

Равенство имеет место, если все элементы данной выборки равны.

Статистическая локация

См. Также: Среднее § Статистическое местоположение Это Сравнение среднего арифметического, медианы и режима двух искаженных ( логарифмически-нормальных ) распределений. Геометрическая визуализация режима, медианы и среднего значения произвольной функции плотности вероятности.

В описательной статистике среднее значение можно спутать со средним значением, модой или средним значением, поскольку любое из них можно назвать «средним» (более формально, мерой центральной тенденции ). Среднее значение набора наблюдений - это среднее арифметическое значений; однако для асимметричных распределений среднее значение не обязательно совпадает со средним значением (медиана) или наиболее вероятным значением (мода). Например, средний доход обычно искажается вверх небольшим количеством людей с очень большими доходами, так что большинство из них имеет доход ниже среднего. Напротив, средний доход - это уровень, на котором половина населения находится ниже, а половина - выше. Режим дохода является наиболее вероятным доходом и благоприятствует большему количеству людей с более низкими доходами. Хотя медиана и мода часто являются более интуитивными мерами для таких искаженных данных, многие искаженные распределения на самом деле лучше всего описываются их средним значением, включая экспоненциальное и пуассоновское распределения.

Среднее значение вероятностного распределения

Основная статья: Ожидаемая стоимость См. Также: Среднее по совокупности

Среднее значение вероятностного распределения - это долгосрочное среднее арифметическое значение случайной величины, имеющей такое распределение. Если случайная величина обозначается, то он также известен как ожидаемое значение из (обозначаемого). Для дискретного распределения вероятностей среднее значение равно, где сумма берется по всем возможным значениям случайной величины и является функцией массы вероятности. Для непрерывного распределения среднее значение равно, где - функция плотности вероятности. Во всех случаях, включая те, в которых распределение не является ни дискретным, ни непрерывным, среднее значение является интегралом Лебега случайной величины относительно ее вероятностной меры. Среднее не обязательно должно существовать или быть конечным; для некоторых распределений вероятностей среднее значение бесконечно ( + ∞ или −∞), в то время как для других среднее значение не определено. Икс {\ displaystyle X} Икс {\ displaystyle X} E ( Икс ) {\ Displaystyle E (X)} Икс п ( Икс ) {\ displaystyle \ textstyle \ sum xP (x)} п ( Икс ) {\ Displaystyle P (x)} - Икс ж ( Икс ) d Икс {\ displaystyle \ textstyle \ int _ {- \ infty} ^ {\ infty} xf (x) \, dx} ж ( Икс ) {\ displaystyle f (x)}

Обобщенные средства

Среднее значение мощности

Обобщенный средний, также известный как мощность среднего или среднего Гельдеровские, абстракция квадратичных, арифметических, геометрических и гармонических средств. Он определяется для набора из n положительных чисел x i формулой

Икс ¯ ( м ) знак равно ( 1 п я знак равно 1 п Икс я м ) 1 м {\ displaystyle {\ bar {x}} (m) = \ left ({\ frac {1} {n}} \ sum _ {i = 1} ^ {n} x_ {i} ^ {m} \ right) ^ {\ frac {1} {m}}}

Выбирая разные значения параметра m, получаются следующие типы средних:

м {\ Displaystyle м \ rightarrow \ infty} максимум из Икс я {\ displaystyle x_ {i}}
м знак равно 2 {\ displaystyle m = 2} среднее квадратичное
м знак равно 1 {\ displaystyle m = 1} среднее арифметическое
м 0 {\ displaystyle m \ rightarrow 0} среднее геометрическое
м знак равно - 1 {\ displaystyle m = -1} гармоническое среднее
м - {\ displaystyle m \ rightarrow - \ infty} минимум из Икс я {\ displaystyle x_ {i}}

f -среднее

Это может быть далее обобщено как обобщенное f- среднее

Икс ¯ знак равно ж - 1 ( 1 п я знак равно 1 п ж ( Икс я ) ) {\ displaystyle {\ bar {x}} = f ^ {- 1} \ left ({{\ frac {1} {n}} \ sum _ {i = 1} ^ {n} {f \ left (x_ { i} \ right)}} \ right)}

и снова подходящий выбор обратимой f даст

ж ( Икс ) знак равно Икс {\ Displaystyle е (х) = х} среднее арифметическое,
ж ( Икс ) знак равно 1 Икс {\ displaystyle f (x) = {\ frac {1} {x}}} гармоническое среднее,
ж ( Икс ) знак равно Икс м {\ Displaystyle е (х) = х ^ {м}} средней мощности,
ж ( Икс ) знак равно пер ( Икс ) {\ Displaystyle е (х) = \ пер (х)} среднее геометрическое.

Средневзвешенное арифметическое

Взвешенное среднее арифметическое (или средневзвешенная) используется, если кто -то хочет, чтобы объединить средние значения из разных размеров образцов одного и того же населения:

Икс ¯ знак равно я знак равно 1 п ш я Икс я ¯ я знак равно 1 п ш я . {\ displaystyle {\ bar {x}} = {\ frac {\ sum _ {i = 1} ^ {n} {w_ {i} {\ bar {x_ {i}}}}} {\ sum _ {i = 1} ^ {n} w_ {i}}}.}

Где и - среднее значение и размер выборки соответственно. В других приложениях они представляют собой меру надежности влияния соответствующих значений на среднее значение. Икс я ¯ {\ displaystyle {\ bar {x_ {i}}}} ш я {\ displaystyle w_ {i}} я {\ displaystyle i}

Усеченное среднее

Иногда набор чисел может содержать выбросы (т. Е. Значения данных, которые намного ниже или намного выше, чем другие). Часто выбросы - это ошибочные данные, вызванные артефактами. В этом случае можно использовать усеченное среднее. Он включает в себя отбрасывание заданных частей данных на верхнем или нижнем конце, обычно равное количество на каждом конце, а затем взятие среднего арифметического оставшихся данных. Количество удаленных значений указывается в процентах от общего количества значений.

Межквартильное среднее

Межквартильное среднее представляет собой конкретный пример усеченного среднего. Это просто среднее арифметическое после удаления самой низкой и самой высокой четвертей значений.

Икс ¯ знак равно 2 п я знак равно п 4 + 1 3 4 п Икс я {\ displaystyle {\ bar {x}} = {\ frac {2} {n}} \; \ sum _ {i = {\ frac {n} {4}} + 1} ^ {{\ frac {3} {4}} п} \! \! X_ {i}}

Предполагая, что значения упорядочены, это просто конкретный пример взвешенного среднего для определенного набора весов.

Среднее значение функции

Основная статья: Среднее значение функции

В некоторых случаях математики могут вычислить среднее значение бесконечного (или даже бесчисленного ) набора значений. Это может произойти при вычислении среднего значения функции. Интуитивно, среднее значение функции можно представить как вычисление площади под участком кривой с последующим делением на длину этого участка. Это можно сделать грубо, подсчитывая квадраты на миллиметровой бумаге, или, точнее, интегрированием. Формула интегрирования записывается как: у в среднем {\ displaystyle y _ {\ text {avg}}} ж ( Икс ) {\ displaystyle f (x)}

у в среднем ( а , б ) знак равно 1 б - а а б ж ( Икс ) d Икс {\ displaystyle y _ {\ text {avg}} (a, b) = {\ frac {1} {ba}} \ int \ limits _ {a} ^ {b} \! f (x) \, dx}

В этом случае необходимо следить за тем, чтобы интеграл сходился. Но среднее значение может быть конечным, даже если сама функция в некоторых точках стремится к бесконечности.

Среднее значение углов и циклических величин

Углы, время суток и другие циклические величины требуют модульной арифметики для сложения или объединения чисел. Во всех этих ситуациях не будет единственного средства. Например, время за час до и после полуночи равноудалено как полуночи, так и полудню. Также возможно, что никакого среднего не существует. Возьмем цветовое колесо - набор всех цветов не имеет значения. В таких ситуациях вы должны решить, какое среднее значение будет наиболее полезным. Вы можете сделать это, скорректировав значения перед усреднением или используя специальный подход для среднего круговых величин.

Фреше означает

Средний Фреш дает способ для определения «центра» распределения масс на поверхности или, в более общем случае, риманово многообразии. В отличие от многих других средств, среднее значение Фреше определяется в пространстве, элементы которого не обязательно складываются или умножаются на скаляры. Иногда его также называют средним Керхером (в честь Германа Керхера).

Правило Свонсона

Это приближение к среднему значению для умеренно искаженного распределения. Он используется при разведке углеводородов и определяется как

м знак равно 0,3 п 10 + 0,4 п 50 + 0,3 п 90 {\ displaystyle m = 0,3P_ {10} + 0,4P_ {50} + 0,3P_ {90}}

где P 10, P 50 и P 90 10-й, 50-й и 90-й процентили распределения.

Другие средства

Основная категория: Средства
Смотрите также
Примечания
использованная литература
Последняя правка сделана 2024-01-02 04:10:18
Содержание доступно по лицензии CC BY-SA 3.0 (если не указано иное).
Обратная связь: support@alphapedia.ru
Соглашение
О проекте