Ромб | |
---|---|
Два ромба | |
Тип | четырехугольник, трапеция, параллелограмм, воздушный змей |
Ребра и вершины | 4 |
Символ Шлефли | {} + {} {2 α } |
Диаграмма Кокстера | |
Группа симметрии | Двугранный (D 2), [2], (* 22), порядок 4 |
Площадь | (половина произведения диагоналей) |
Двойной многоугольник | прямоугольник |
Характеристики | выпуклый, изотоксальный |
В плоскости евклидовой геометрии, A ромб (множественные число ромбов или ромбы) представляет собой четырехугольник, чьи четырех сторон все имеют одинаковую длину. Другое название - равносторонний четырехугольник, поскольку равносторонний означает, что все его стороны равны по длине. Ромб часто называют бриллиантом в честь масти бриллиантов на игральных картах, которая напоминает проекцию восьмигранного ромба или ромб, хотя первый иногда конкретно относится к ромбу с углом 60 ° (который некоторые авторы называют калиссоном после французское сладкое - также см. Полиамонд ), а последнее иногда относится именно к ромбу с углом 45 °.
Каждый ромб простой (не самопересекающийся) и является частным случаем параллелограмма и воздушного змея. Ромб с прямыми углами - это квадрат.
Слово «ромб» происходит от древнегреческого : ῥόμβος, латинизировано : rhombos, что означает нечто, что вращается, что происходит от глагола ῥέμβω, латинизированного: rhémbō, что означает «вращаться и кружиться ». Это слово использовали как Евклид, так и Архимед, которые использовали термин «сплошной ромб» для двуконуса, двух правильных круговых конусов, имеющих общее основание.
Поверхность, которую мы сегодня называем ромбом, представляет собой поперечное сечение биконуса на плоскости, проходящей через вершины двух конусов.
Простой (не самопересекающийся ) четырехугольник является ромбом тогда и только тогда, когда он представляет собой любое одно из следующих действий:
Каждый ромб имеет две диагонали, соединяющие пары противоположных вершин, и две пары параллельных сторон. Используя равные треугольники, можно доказать, что ромб симметричен по каждой из этих диагоналей. Отсюда следует, что любой ромб обладает следующими свойствами:
Первое свойство означает, что каждый ромб является параллелограммом. Следовательно, ромб обладает всеми свойствами параллелограмма : например, противоположные стороны параллельны; смежные углы являются дополнительными ; две диагонали делят друг друга пополам ; любая линия, проходящая через среднюю точку, делит площадь пополам; а сумма квадратов сторон равна сумме квадратов диагоналей ( закон параллелограмма ). Таким образом, обозначая общую сторону как a, а диагонали как p и q, в каждом ромбе
Не каждый параллелограмм является ромбом, хотя любой параллелограмм с перпендикулярными диагоналями (второе свойство) является ромбом. В общем, любой четырехугольник с перпендикулярными диагоналями, одна из которых является линией симметрии, является воздушным змеем. Каждый ромб - это воздушный змей, а любой четырехугольник, который одновременно является воздушным змеем и параллелограммом, - ромбом.
Ромб - это касательный четырехугольник. То есть он имеет вписанную окружность, касательную ко всем четырем сторонам.
Ромб. Каждый угол, отмеченный черной точкой, является прямым. Высота h - это расстояние по перпендикуляру между любыми двумя несмежными сторонами, которое равно диаметру вписанной окружности. Диагонали длин p и q - это отрезки красной пунктирной линии.Длину диагоналей p = AC и q = BD можно выразить через сторону ромба a и угол при вершине α как
а также
Эти формулы являются прямым следствием закона косинусов.
Внутренний радиус (радиус окружности, вписанной в ромб), обозначаемый r, может быть выражен через диагонали p и q как
или с точки зрения длины стороны a и любого угла при вершине α или β как
Что касается всех параллелограммов, площадь K ромба равна произведению его основания и его высоты ( h). Основание - это просто любая сторона длиной a:
Площадь также может быть выражена как квадрат основания, умноженный на синус любого угла:
или по высоте и углу при вершине :
или как половину произведения диагоналей p, q:
или как полупериметром раз радиус из круга, вписанного в ромб (inradius):
Другой способ, аналогичный параллелограммам, состоит в том, чтобы рассматривать две соседние стороны как векторы, образующие бивектор, поэтому площадь - это величина бивектора (величина векторного произведения двух векторов), которая является определителем двух Декартовы координаты векторов: K = x 1 y 2 - x 2 y 1.
Двойной многоугольник ромба является прямоугольником :
Стороны ромба с центром в начале координат с диагоналями, каждая из которых падает на ось, состоят из всех точек ( x, y), удовлетворяющих условиям
Вершины находятся в точке и Это частный случай суперэллипса с показателем 1.
Как топологические квадратные мозаики | Как ромбовидная плитка под углом 30-60 градусов | |
---|---|---|
Изоэдральные многогранники | Неизоэдральные многогранники | |||
---|---|---|---|---|
Идентичные ромбы | Идентичные золотые ромбы | Два вида ромбов | Три вида ромбов | |
Ромбический додекаэдр | Ромбический триаконтаэдр | Ромбический икосаэдр | Ромбический эннеконтаэдр | Ромбоэдр |
Ромбоэдр (также называемый ромбические шестигранники) представляет собой трехмерную фигуру как параллелепипеда (также называемый прямоугольный параллелепипед), за исключением того, что ее 3 пары параллельных граней до 3 -х типов ромбов вместо прямоугольников.
Ромбический додекаэдр является выпуклым многогранник с 12 конгруэнтными ромбами как его грани.
Ромбический триаконтаэдр является выпуклым многогранник с 30 золотыми ромбами (ромбы, диагонали которого находится в золотая пропорция ) в качестве его граней.
Большое ромбический триаконтаэдр является невыпуклым равногранным, isotoxal полиэдр с 30 пересекающимися ромбическими гранями.
Ромбический hexecontahedron является плеяде'ученым из ромбического триаконтаэдра. Он невыпуклый, с 60 золотыми ромбическими гранями с икосаэдрической симметрией.
Ромбическое enneacontahedron многогранник, состоящий из 90 ромбических граней, причем три, пять, шесть или ромбов встречи в каждой вершине. В нем 60 широких ромбов и 30 тонких.
Trapezo-ромбический додекаэдр представляет собой выпуклый многогранник с 6 ромбическими и 6 трапециевидным лицом.
Ромбические Икосаэдр многогранник состоит из 20 ромбических граней, из которых три, четыре или пять встречаются в каждой вершине. У него 10 граней на полярной оси и 10 граней, следующих за экватором.