Uranium hexachloride

From Wikipedia, the free encyclopedia
Uranium hexachloride
Names
IUPAC name
Uranium(VI) chloride
Other names
Uranium hexachloride
Peruranic chloride
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/6ClH.U/h6*1H;/p-6
    Key: XFCORTPUZRSUIZ-UHFFFAOYSA-H
  • [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[U]
Properties
UCl6
Molar mass 450.745 g/mol
Appearance dark green crystalline solid
Density 3.6 g/cm3
Melting point 177 °C (351 °F; 450 K)
Related compounds
Other anions
Uranium hexafluoride
Other cations
Tungsten hexachloride
Related uranium chlorides
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Uranium hexachloride (UCl6) is an inorganic chemical compound of uranium in the +6 oxidation state.[1][2] UCl6 is a metal halide composed of uranium and chlorine. It is a multi-luminescent dark green crystalline solid with a vapor pressure between 1-3 mmHg at 373.15 K.[3] UCl6 is stable in a vacuum, dry air, nitrogen and helium at room temperature. It is soluble in carbon tetrachloride (CCl4). Compared to the other uranium halides, little is known about UCl6.

Structure and Bonding[edit]

Uranium hexachloride has an octahedral geometry, with point group Oh. Its lattice (dimensions: 10.95 ± 0.02 Å x 6.03 ± 0.01 Å) is hexagonal in shape with three molecules per cell; the average theoretical U-Cl bond is 2.472 Å long (the experimental U-Cl length found by X-ray diffraction is 2.42 Å),[4] and the distance between two adjacent chlorine atoms is 3.65 Å.

Chemical properties[edit]

Uranium hexachloride is a highly hygroscopic compound and decomposes readily when exposed to ordinary atmospheric conditions.[5] therefore it should be handled in either a vacuum apparatus or in a dry box.

Thermal decomposition[edit]

UCl6 is stable up to temperatures between 120 °C and 150 °C. The decomposition of UCl6 results in a solid phase transition from one crystal form of UCl6 to another more stable form.[6] However, the decomposition of gaseous UCl6 produces UCl5. The activation energy for this reaction is about 40 kcal per mole.

2 UCl6 (g) → 2 UCl5 (s) + Cl2 (g)

Solubility[edit]

UCl6 is not a very soluble compound. It dissolves in CCl4 to give a brown solution. It is slightly soluble in isobutyl bromide and in fluorocarbon (C7F16).[6]

Solvents Temperature (°C) Grams of UCl6/100g of solution
CCl4 −18 2.64
CCl4 0 4.9
CCl4 20 7.8
6.6% Cl2 : 93.4% CCl4 −20 2.4
12.5% Cl2 : 87.5% CCl4 −20 2.23
12.5% Cl2 : 87.5% CCl4 0 3.98
Liquid Cl2 −33 2.20
CH3Cl −24 1.16
Benzene 80 Insoluble
Freon 113 45 1.83

Reaction with hydrogen fluoride[edit]

When UCl6 is reacted with purified anhydrous liquid hydrogen fluoride (HF) at room temperature produces UF5.[6]

2 UCl6 + 10 HF → 2 UF5 + 10 HCl + Cl2

Synthesis[edit]

Uranium hexachloride can be synthesized from the reaction of uranium trioxide (UO3) with a mixture of liquid CCl4 and hot chlorine (Cl2). The yield can be increased if the reaction carried out in the presence of UCl5.[7] The UO3 is converted to UCl5, which in turn reacts with the excess Cl2 to form UCl6. It requires a substantial amount of heat for the reaction to take place; the temperature range is from 65 °C to 170 °C depending on the amount of reactant (ideal temperature 100 °C - 125 °C). The reaction is carried out in a closed gas-tight vessel (for example a glovebox) that can withstand the pressure that builds up.

Step 1: 2 UO3 + 5 Cl2 → 2 UCl5 + 3 O2

Step 2: 2 UCl5 + Cl2 → 2 UCl6

Overall reaction: 2 UO3 + 6 Cl2 → 2 UCl6 + 3 O2

This metal hexahalide can also be synthesized by blowing Cl2 gas over sublimed UCl4 at 350 °C.[8]

Step 1: 2 UCl4 + Cl2 → 2 UCl5

Step 2: 2 UCl5 + Cl2 → 2 UCl6

Overall Reaction: UCl4 + Cl2 → UCl6

References[edit]

  1. ^ Zachariasen, W. H. (1948). "Crystal chemical studies of the 5f-series of elements. V. The crystal structure of uranium hexachloride". Acta Crystallographica. 1 (6): 285–287. Bibcode:1948AcCry...1..285Z. doi:10.1107/S0365110X48000788.
  2. ^ Taylor, J. C.; Wilson, P. W. (1974). "Neutron and X-ray powder diffraction studies of the structure of uranium hexachloride". Acta Crystallographica Section B. 30 (6): 1481. Bibcode:1974AcCrB..30.1481T. doi:10.1107/S0567740874005115.
  3. ^ Van Dyke, R. E.; Evers, E. C. (1955). "Preparation of Uranium Hexachloride". Google Patents: 2.
  4. ^ Batista, E. R.; Martin, R. L.; Hay, P. J. (2004). "Density Functional Investigations of the Properties and Thermodynamics of UFn and UCln (n=1,...,6)". J. Chem. Phys. 121 (22): 11104–11. doi:10.1063/1.1811607. PMID 15634063.
  5. ^ Lipkin, D.; Wessman, S. (1955). "Process and Apparatus for protecting Uranium hexachloride from Deterioration and Contamination". Google Patents: 2.
  6. ^ a b c Katz, J.J.; Rabinowitch,E. (1951). The Chemistry of Uranium. Ann Arbor: The McGraw-Hill Book Company.
  7. ^ Van Dyke, R. E.; Evers, E. C. (1955). "Preparation of Uranium Hexachloride". Google Patents: 2.
  8. ^ Thornton, G.; Edelstein, N.; Rösch, N.; Woodwark, D.R.; Edgell, R.G. (1979). "The Electronic Structure of UCl6: Photoelectron Spectra and Scattered Wave Xα Calculations". J. Chem. Phys. 70 (11): 6. Bibcode:1979JChPh..70.5218T. doi:10.1063/1.437313.