Список математических операторов

редактировать
Статья списка Википедии

В математике оператор или преобразование - это функция из одного пространства функций в другое. Операторы часто встречаются в инженерии, физике и математике. Многие из них - это интегральные операторы и дифференциальные операторы.

. Далее L - это оператор

L: F → G {\ displaystyle L: {\ mathcal {F}} \ to {\ mathcal {G}}}{\ displaystyle L: {\ mathcal {F} } \ to {\ mathcal {G}}}

, который переводит функцию y ∈ F {\ displaystyle y \ in {\ mathcal {F}}}{\ displaystyle y \ in {\ mathcal {F}}} в другую функцию L [y] ∈ G {\ Displaystyle L [y] \ in {\ mathcal {G}}}{\ displaystyle L [y] \ in {\ mathcal {G}}} . Здесь F {\ displaystyle {\ mathcal {F}}}{\ mathcal {F}} и G {\ displaystyle {\ mathcal {G}}}{\ mathcal {G}) } некоторые неуказанные функциональные пространства, такие как пространство Харди, пространство L, пространство Соболева или, что более неопределенно, пространство голоморфных функций.

ВыражениеКривая. определениеПеременныеОписание
Линейные преобразования
L [y] = y (n) {\ displaystyle L [ y] = y ^ {(n)}}{\ displaystyle L [y] = y ^ {(n)}} Производная n-го порядка
L [y] = ∫ atydt {\ displaystyle L [y] = \ int _ {a} ^ {t} y \, dt }{\ displaystyle L [y] = \ int _ {a} ^ {t} y \, dt} декартовоy = y (x) {\ displaystyle y = y (x)}y = y (x) . x = t {\ displaystyle x = t}{\ displaystyle x = t} Целое число, площадь
L [y] знак равно Y ∘ е {\ displaystyle L [y] = y \ circ f}{\ displaystyle L [y] = y \ circ f} Оператор композиции
L [y] = y ∘ t + y ∘ - t 2 {\ displaystyle L [y] = {\ frac {y \ circ t + y \ circ -t} {2}}}{\ displaystyle L [y] = {\ frac {y \ circ t + y \ circ -t} {2}}} Четный компонент
L [y] = y ∘ t - y ∘ - t 2 {\ displaystyle L [y] = {\ frac {y \ circ ty \ circ -t} {2}}}{\ displaystyle L [y] = {\ frac {y \ circ ty \ circ -t} {2}}} Нечетный компонент
L [y] = y ∘ (t + 1) - y ∘ t = Δ y {\ displaystyle L [y] = y \ circ (t + 1) -y \ circ t = \ Delta y}{\ displaystyle L [y] = y \ circ (t + 1) -y \ круг t = \ Delta y} Оператор разности
L [y] = y ∘ (t) - y ∘ (t - 1) = ∇ y {\ displaystyle L [y] = y \ circ (t) -y \ circ (t-1) = \ nabla y}{\ displaystyle L [y] = y \ circ (t) -y \ circ (t-1) = \ nabla y} Разница в обратном направлении (оператор Набла)
L [y] = ∑ y = Δ - 1 y { \ displaystyle L [y] = \ sum y = \ Delta ^ {- 1} y}{\ displaystyle L [y] = \ sum y = \ Delta ^ {- 1} y} Оператор неопределенной суммы (обратный оператор разности)
L [y] = - (py ′) ′ + qy {\ displaystyle L [y] = - (py ')' + qy}{\displaystyle L[y]=-(py')'+qy}оператор Штурма – Лиувилля
Нелинейные преобразования
F [y] = y [- 1] {\ displaystyle F [ y] = y ^ {[- 1]}}{\ displaystyle F [y] = y ^ {[- 1]}} Обратная функция
F [y] = ty ′ [- 1] - y ∘ y ′ [- 1] {\ displaystyle F [y] = t \, y '^ {[- 1]} - y \ circ y' ^ {[- 1]}}{\displaystyle F[y]=t\,y'^{[-1]}-y\circ y'^{[-1]}}преобразование Лежандра
F [y] = f ∘ y {\ displaystyle F [y] = f \ круг y}{\ displaystyle F [y] = f \ circ y} композиция слева
F [y] = ∏ y {\ displaystyle F [y] = \ prod y}{\ displaystyle F [y] = \ prod y} неопределенное произведение
F [y] = y ′ y {\ displaystyle F [y] = {\ frac {y '} {y}}}{\displaystyle F[y]={\frac {y'}{y}}}Логарифмическая производная
F [y] = ty ′ y {\ displaystyle F [y] = {\ frac {ty'} {y} }}{\displaystyle F[y]={\frac {ty'}{y}}}Эластичность
F [y] = y ‴ y ′ - 3 2 ( y ″ y ′) 2 {\ displaystyle F [y] = {y '' '\ over y'} - {3 \ over 2} \ left ({y '' \ over y '} \ right) ^ {2} }{\displaystyle F[y]={y''' \over y'}-{3 \over 2}\left({y'' \over y'}\right)^{2}}Производная Шварца
F [y] = ∫ at | y ′ | dt {\ displaystyle F [y] = \ int _ {a} ^ {t} | y '| \, dt}{\displaystyle F[y]=\int _{a}^{t}|y'|\,dt}Общая вариация
F [y] = 1 t - a ∫ atydt {\ displaystyle F [y] = {\ frac {1} {ta}} \ int _ {a} ^ {t} y \, dt}{\ displaystyle F [y] = {\ frac {1} {ta}} \ int _ { a} ^ {t} y \, dt} Среднее арифметическое
F [y] = exp ⁡ (1 t - a ∫ при пер ⁡ ярд) {\ displaystyle F [y] = \ ехр \ влево ({\ гидроразрыва {1} {ta}} \ int _ {a} ^ {t} \ ln y \, dt \ right)}{\ displaystyle F [y] = \ exp \ left ({\ frac {1} {ta}} \ int _ {a} ^ {t} \ пер y \, dt \ right)} Среднее геометрическое
F [y] = - yy ′ {\ displaystyle F [y] = - {\ frac {y} {y '}}}{\displaystyle F[y]=-{\frac {y}{y'}}}декартовоy = y (x) {\ displaystyle y = y (x)}y = y (x) . x = t {\ displaystyle x = t}{\ displaystyle x = t} Субкасательный
F [x, y] = - yx ′ y ′ {\ displaystyle F [x, y] = - {\ frac {yx '} {y'}}}{\displaystyle F[x,y]=-{\frac {yx'}{y'}}}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)}
F [r] = - r 2 r ′ {\ displaystyle F [r] = - {\ frac {r ^ {2}} {r '}}}{\displaystyle F[r]=-{\frac {r^{2}}{r'}}}Полярныйr = r (ϕ) {\ displaystyle r = r (\ phi)}{\ displaystyle r = r (\ phi)} . ϕ = t {\ displaystyle \ phi = t}{\ displaystyle \ phi = t}
F [r] = 1 2 ∫ atr 2 dt {\ displaystyle F [r] = {\ frac {1} {2}} \ int _ {a} ^ {t} r ^ {2} dt}{\ displaystyle F [r] = {\ гидроразрыва {1} {2}} \ int _ {a} ^ {t} r ^ {2} dt} Полярныйr = r (ϕ) {\ displaystyle r = r (\ phi)}{\ displaystyle r = r (\ phi)} . ϕ = t {\ displaystyle \ phi = t }{\ displaystyle \ phi = t} Площадь сектора
F [y] = ∫ at 1 + y ′ 2 dt {\ displaystyle F [y] = \ int _ {a} ^ {t} {\ sqrt {1 + y '^ { 2}}} \, dt}{\displaystyle F[y]=\int _{a}^{t}{\sqrt {1+y'^{2}}}\,dt}декартовоy = y (x) {\ displaystyle y = y (x)}y = y (x) . x = t {\ displaystyle x = t}{\ displaystyle x = t} Длина дуги
F [x, y] = ∫ atx ′ 2 + y ′ 2 dt {\ displaystyle F [x, y] = \ int _ {a} ^ {t} {\ sqrt {x '^ {2} + y '^ {2}}} \, dt}{\displaystyle F[x,y]=\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}Параметрический. Декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)}
F [r] = ∫ atr 2 + r ′ 2 dt {\ displaystyle F [r] = \ int _ {a} ^ {t} {\ sqrt {r ^ {2} + r '^ {2}}} \, dt}{\displaystyle F[r]=\int _{a}^{t}{\sqrt {r^{2}+r'^{2}}}\,dt}Полярныйr = r (ϕ) {\ displaystyle r = r (\ phi)}{\ displaystyle r = r (\ phi)} . ϕ = t {\ displaystyle \ phi = t }{\ displaystyle \ phi = t}
F [x, y] = ∫ aty ″ 3 dt {\ displaystyle F [x, y] = \ int _ {a} ^ {t} {\ sqrt [{3}] {y ''}} \, dt}{\displaystyle F[x,y]=\int _{a}^{t}{\sqrt[{3}]{y''}}\,dt}декартовоy = y (x) {\ displaystyle y = y (x)}y = y (x) . x = t {\ displaystyle x = t}{\ displaystyle x = t} аффинная длина дуги
F [x, y] = ∫ atx ′ y ″ - x ″ y ′ 3 dt {\ displaystyle F [x, y] = \ int _ {a} ^ {t} {\ sqrt [{3}] {x'y '' -x''y '}} \, dt}{\displaystyle F[x,y]=\int _{a}^{t}{\sqrt[{3}]{x'y''-x''y'}}\,dt}Параметрический. Декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)}
F [x, y, z] = ∫ atz ‴ (x ′ y ″ - y ′ x ″) + z ″ (x ‴ y ′ - x ′ y ‴) + z ′ (x ″ y ‴ - x ‴ y ″) 3 {\ displaystyle F [x, y, z] = \ int _ {a} ^ {t} {\ sqrt [{ 3}] {z '' '(x'y' '- y'x' ') + z' '(x' '' y'-x'y '' ') + z' (x''y '' ' '-x' '' y '')}}}{\displaystyle F[x,y,z]=\int _{a}^{t}{\sqrt[{3}]{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}}}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) { \ displaystyle y = y (t)}{\ displaystyle y = y (t)} . z = z (t) {\ displaystyle z = z (t)}{\ displaystyle z знак равно z (t)}
F [y] = y ″ (1 + y ′ 2) 3/2 {\ displaystyle F [y] = {\ frac {y ''} {(1 + y '^ {2}) ^ {3/2}}}}{\displaystyle F[y]={\frac {y''}{(1+y'^{2})^{3/2}}}}декартовоy = y (x) {\ displaystyle y = y (x)}y = y (x) . x = t {\ displaystyle x = t}{\ displaystyle x = t} Кривизна
F [x, y] = x ′ y ″ - y ′ x ″ (x ′ 2 + y ′ 2) 3/2 {\ displaystyle F [x, y] = {\ frac {x'y '' - y'x ''} {(x '^ {2} + y' ^ {2}) ^ {3 / 2}}}}{\displaystyle F[x,y]={\frac {x'y''-y'x''}{(x'^{2}+y'^{2})^{3/2}}}}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)}
F [r] = r 2 + 2 r ′ 2 - rr ″ (r 2 + r ′ 2) 3/2 {\ displaystyle F [r] = {\ frac {r ^ {2} + 2r '^ {2} -rr' '} {(r ^ {2} + r' ^ {2}) ^ {3/2}}}}{\displaystyle F[r]={\frac {r^{2}+2r'^{2}-rr''}{(r^{2}+r'^{2})^{3/2}}}}Полярныйr = r (ϕ) {\ di splaystyle r = r (\ phi)}{\ displaystyle r = r (\ phi)} . ϕ = t {\ displaystyle \ phi = t}{\ displaystyle \ phi = t}
F [x, y, z] = (z ″ y ′ - z ′ y ″) 2 + (x ″ Z ′ - z ″ x ′) 2 + (y ″ x ′ - x ″ y ′) 2 (x ′ 2 + y ′ 2 + z ′ 2) 3/2 {\ displaystyle F [x, y, z] = {\ frac {\ sqrt {(z''y'-z'y '') ^ {2} + (x''z'-z''x ') ^ {2} + (y''x' -x''y ') ^ {2}}} {(x' ^ {2} + y '^ {2} + z' ^ {2}) ^ {3/2}}}}{\displaystyle F[x,y,z]={\frac {\sqrt {(z''y'-z'y'')^{2}+(x''z'-z''x')^{2}+(y''x'-x''y')^{2}}}{(x'^{2}+y'^{2}+z'^{2})^{3/2}}}}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)} . z = z (t) {\ displaystyle z = z (t)}{\ displaystyle z знак равно z (t)}
F [y] = 1 3 y ⁗ (y ″) 5/3 - 5 9 y ‴ 2 (y ″) 8/3 {\ displaystyle F [y] = {\ frac {1} {3}} {\ frac {y '' ''} {(y '') ^ {5/3}}} - {\ frac {5} {9}} {\ frac {y '' '^ {2}} {(y' ') ^ {8/3}}}}{\displaystyle F[y]={\frac {1}{3}}{\frac {y''''}{(y'')^{5/3}}}-{\frac {5}{9}}{\frac {y'''^{2}}{(y'')^{8/3}}}}декартовоy = y (x) {\ displaystyle y = y (x)}y = y (x) . x = t {\ displaystyle x = t}{\ displaystyle x = t} Аффинная кривизна
F [x, y] = x ″ y ‴ - x ‴ y ″ (x ′ y ″ - x ″ y ′) 5/3 - 1 2 [1 (x ′ y ″ - x ″ y ′) 2/3] ″ {\ displaystyle F [x, y] = {\ frac {x''y '' '- x' '' y ''} {( x'y '' - x''y ') ^ {5/3}}} - {\ frac {1} {2}} \ left [{\ frac {1} {(x'y' '- x' 'y') ^ {2/3}}} \ right] ''}{\displaystyle F[x,y]={\frac {x''y'''-x'''y''}{(x'y''-x''y')^{5/3}}}-{\frac {1}{2}}\left[{\frac {1}{(x'y''-x''y')^{2/3}}}\right]''}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)}
F [x, y, z] = z ‴ (x ′ y ″ - y ′ x ″) + z ″ (x ‴ y ′ - x ′ y ‴) + z ′ (x ″ y ‴ - x ‴ y ″) (x ′ 2 + y ′ 2 + z ′ 2) (x ″ 2 + y ″ 2 + z ″ 2) {\ displaystyle F [x, y, z] = {\ frac {z '' '(x'y' '- y'x '') + z '' (x '' 'y'-x'y' '') + z '(x''y' '' '- x' '' y '')} {(x '^ {2 } + y '^ {2} + z' ^ {2}) (x '' ^ {2} + y '' ^ {2} + z '' ^ {2})}}}{\displaystyle F[x,y,z]={\frac {z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}{(x'^{2}+y'^{2}+z'^{2})(x''^{2}+y''^{2}+z''^{2})}}}Параметрический. Декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)} . z = z (t) { \ displaystyle z = z (t)}{\ displaystyle z знак равно z (t)} Кручение кривых
X [x, y] = y ′ yx ′ - xy ′ {\ displaystyle X [x, y] = {\ frac {y '} { yx'-xy '}}}{\displaystyle X[x,y]={\frac {y'}{yx'-xy'}}}.. Y [x, y] = x ′ xy ′ - yx ′ {\ displaystyle Y [x, y] = {\ frac {x'} {xy'-yx '}} }{\displaystyle Y[x,y]={\frac {x'}{xy'-yx'}}}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)} Двойная кривая. (координаты касательной)
X [x, y] = x + ay ′ x ′ 2 + y ′ 2 {\ displaystyle X [x, y] = x + {\ frac {ay ' } {\ sqrt {x '^ {2} + y' ^ {2}}}}}X[x,y]=x+\frac{ay'}{\sqrt {x'^2+y'^2}}.. Y [x, y ] = y - ax ′ x ′ 2 + y ′ 2 {\ displaystyle Y [x, y] = y - {\ frac {ax '} {\ sqrt {x' ^ {2} + y '^ {2}} }}}{\displaystyle Y[x,y]=y-{\frac {ax'}{\sqrt {x'^{2}+y'^{2}}}}}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)} Параллельная кривая
X [x, y] = x + y ′ x ′ 2 + y ′ 2 x ″ y ′ - y ″ x ′ {\ displaystyle X [x, y] = x + y '{\ гидроразрыв {x '^ {2} + y' ^ {2}} {x''y'-y''x '}}}{\displaystyle X[x,y]=x+y'{\frac {x'^{2}+y'^{2}}{x''y'-y''x'}}}.. Y [x, y] = y + x ′ x ′ 2 + y ′ 2 y ″ x ′ - x ″ y ′ {\ displaystyle Y [x, y] = y + x '{\ frac {x' ^ {2} + y '^ {2}} {y''x'- x''y '}}}{\displaystyle Y[x,y]=y+x'{\frac {x'^{2}+y'^{2}}{y''x'-x''y'}}}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)} Evolute
F [r] = t (r ′ ∘ r [- 1]) {\ displaystyle F [r] = t (r '\ circ r ^ {[- 1]}) }{\displaystyle F[r]=t(r'\circ r^{[-1]})}Внутреннийr = r (s) {\ displaystyle r = r (s)}{\ displaystyle r = r (s)} . s = t {\ displaystyle s = t}s = t
X [x, y] = x - x ′ ∫ atx ′ 2 + y ′ 2 dtx ′ 2 + y ′ 2 {\ displaystyle X [x, y] = x - {\ frac {x '\ int _ {a} ^ {t} {\ sqrt {x' ^ {2} + y '^ {2}}} \, dt} {\ sqrt {x' ^ {2} + y '^ {2}}}}}{\displaystyle X[x,y]=x-{\frac {x'\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}{\sqrt {x'^{2}+y'^{2}}}}}.. Y [x, y] = y - y ′ ∫ atx ′ 2 + y ′ 2 dtx ′ 2 + y ′ 2 {\ displaystyle Y [x, y] = y - {\ frac {y '\ int _ {a} ^ {t} {\ sqrt {x' ^ {2} + y '^ {2}}} \, dt} {\ sqrt {x' ^ { 2} + y '^ {2}}}}}{\displaystyle Y[x,y]=y-{\frac {y'\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}{\sqrt {x'^{2}+y'^{2}}}}}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) { \ displaystyle y = y (t)}{\ displaystyle y = y (t)} инволют
X [x, y] = (xy ′ - yx ′) y ′ x ′ 2 + y ′ 2 {\ displaystyle X [x, y] = { \ frac {(xy'-yx ') y'} {x '^ {2} + y' ^ {2}}}}X[x,y]={\frac {(xy'-yx')y'}{x'^{2}+y'^{2}}}.. Y [x, y] = (yx ′ - xy ′) ​​x ′ x ′ 2 + y ′ 2 {\ displaystyle Y [x, y] = {\ frac {(yx'-xy ') x'} {x '^ {2} + y' ^ {2}}}}{\displaystyle Y[x,y]={\frac {(yx'-xy')x'}{x'^{2}+y'^{2}}}}Параметрический. декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y (t)}{\ displaystyle y = y (t)} Кривая педали с концом педали (0; 0)
X [x, y] = (x ′ 2 - y ′ 2) y ′ + 2 xyx ′ xy ′ - yx ′ {\ displaystyle X [x, y] = { \ frac {(x '^ {2} -y' ^ {2}) y '+ 2xyx'} {xy'-yx '}}}{\displaystyle X[x,y]={\frac {(x'^{2}-y'^{2})y'+2xyx'}{xy'-yx'}}}.. Y [x, y] = (x ′ 2 - y ′ 2) x ′ + 2 xyy ′ xy ′ - yx ′ {\ displaystyle Y [x, y] = {\ frac {(x '^ {2} -y' ^ {2}) x '+ 2xyy'} {ху '-yx'}}}{\displaystyle Y[x,y]={\frac {(x'^{2}-y'^{2})x'+2xyy'}{xy'-yx'}}}Параметрический. Декартовоx = x (t) {\ displaystyle x = x (t)}{\ displaystyle x = x (t)} . y = y (t) {\ displaystyle y = y ( t)}{\ displaystyle y = y (t)} Отрицательная кривая педали с педалью p мазь (0; 0)
Икс [y] = ∫ при соз ⁡ [∫ при 1 ярд] dt {\ displaystyle X [y] = \ int _ {a} ^ {t} \ cos \ left [\ int _ {a} ^ {t} {\ frac {1} {y}} \, dt \ right] dt}{\ displaystyle X [y] = \ int _ {a} ^ {t} \ cos \ left [\ int _ {a} ^ {t} {\ frac {1} {y}} \, dt \ справа] dt} .. Y [y] = ∫ at sin ⁡ [∫ at 1 ydt] dt {\ displaystyle Y [ y] = \ int _ {a} ^ {t} \ sin \ left [\ int _ {a} ^ {t} {\ frac {1} {y}} \, dt \ right] dt}{\ displaystyle Y [ y] = \ int _ {a} ^ {t} \ sin \ left [\ int _ {a} ^ {t} {\ frac {1} {y}} \, dt \ right] dt} Внутреннийy = r (s) {\ displaystyle y = r (s)}{\ displaystyle y = r (s)} . s = t {\ displaystyle s = t}s = t Собственно. декартово. преобразование
Метрические функционалы
F [y] = ‖ Y ‖ знак равно ∫ E Y 2 dt {\ displaystyle F [y] = \ | y \ | = {\ sqrt {\ int _ {E} y ^ {2} \, dt} }}{\ disp Laystyle F [y] = \ | y \ | = {\ sqrt {\ int _ {E} y ^ {2} \, dt}}} Норма
F [x, y] = ∫ E xydt {\ displaystyle F [x, y] = \ int _ {E} xy \, dt}{\ displaystyle F [x, y] = \ int _ {E} xy \, dt} Внутренний продукт
F [ x, y] знак равно arccos ⁡ [∫ E xydt ∫ E x 2 dt ∫ E y 2 dt] {\ displaystyle F [x, y] = \ arccos \ left [{\ frac {\ int _ {E} xy \, dt} {{\ sqrt {\ int _ {E} x ^ {2} \, dt}} {\ sqrt {\ int _ {E} y ^ {2} \, dt}}}} \ right]}{\ displaystyle F [x, y] = \ arccos \ left [{\ frac {\ int _ {E} xy \, dt} {{\ sqrt {\ int _ {E} x ^ {2} \, dt}} {\ sqrt {\ int _ {E} y ^ {2} \, dt}}}} \ right]} Метрика Фубини – Этюд. (внутренний угол)
Функционалы распределения
F [x, y] = x ∗ y = ∫ E x (s) y (t - s) ds {\ displaystyle F [x, y] = x * y = \ int _ {E} x (s) y (t- s) \, ds}{\ displaystyle F [x, y] = x * y = \ int _ {E} x (s) y (ts) \, ds} Свертка
F [y] = ∫ E y ln ⁡ ydt {\ displaystyle F [y] = \ int _ {E} y \ ln y \, dt}{\ displaystyle F [y] = \ int _ {E} y \ ln y \, dt} Дифференциальный энтропия
F [y] = ∫ E ytdt {\ displaystyle F [y] = \ int _ {E} yt \, dt}{\ displaystyle F [y] = \ int _ { E} yt \, dt} Ожидаемое значение
F [y] = ∫ E (t - ∫ E ytdt) 2 ydt {\ displaystyle F [y] = \ int _ {E} \ left (t- \ int _ {E} yt \, dt \ right) ^ {2} y \, dt}{\ displaystyle F [y] = \ int _ {E} \ left (t- \ int _ {E} yt \, dt \ right) ^ {2} y \, dt} Дисперсия
См. Также
Последняя правка сделана 2021-05-28 10:24:25
Содержание доступно по лицензии CC BY-SA 3.0 (если не указано иное).
Обратная связь: support@alphapedia.ru
Соглашение
О проекте