Talk:Animal feed

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

flah[edit]

Montanabw.... about this diff of mine. If you look, Dialectric made this dif, where he had cut content from another article and pasted it here. (I won't waste my time digging that up again). That content itself was unsourced and I believe it was also copyvio, and I considered just deleting it, but I understood what Dialectric was trying to do, so I got relevant sourced content and replaced it with content that covered the same idea. I am glad you made your 2nd edit restoring sources and eliminating the copyvio. Jytdog (talk) 16:46, 19 March 2015 (UTC)[reply]

Yeah, I looked at your material and realized it could be incorporated. I often BRD my own self - for some reason, it's easier for me to revert to the previous and then add in the new stuff than the other way around... I think all is now well? Montanabw(talk) 16:57, 19 March 2015 (UTC)[reply]
:) Jytdog (talk) 17:02, 19 March 2015 (UTC)[reply]
Yea we can do that tomorrow and I will be able and will be able with him to come back and forth with him to the next day or two weeks and I don’t have any plans. 204.76.0.33 (talk) 17:02, 28 February 2023 (UTC)[reply]

New article you may be interested in[edit]

There is a new article that has some overlapping content Feed manufacturing. Editors on this page probably have a better idea what to do with it. Thanks. Happy Squirrel (talk) 02:04, 6 May 2016 (UTC)[reply]

I've merged the two articles, although they were using different styles of footnote (feed manufacturing using "(Name, Year)" references in text and a big list of references at the end the article), so that needs further cleanup at some point. --McGeddon (talk) 08:45, 6 May 2016 (UTC)[reply]
That content is horrible. I am copying it below. It is not fit for publishing yet. Jytdog (talk) 09:02, 6 May 2016 (UTC)[reply]

merged content[edit]

needs work before being added to the article. The :Grain milling" section was OK so I left it.

Extended content
Fodder

The Washington State Department of Agriculture defines feed as a mix of whole or processed grains, concentrates, and commercial feeds for all species of animals to include customer formula and labeled feeds, and pet feed.[1] These feed are now commercially produced for the livestock, poultry, swine, and fish industries. The commercial production of feed is governed by state and national laws. For example, whole or processed grains, concentrates, and commercial feeds with the purpose of feeding wildlife and pets should be duly described in words or animation for distribution by sellers.[2] Most State and Federal codes have clearly stated that commercial feeds should not be adulterated.[2] Animal feeds have been broadly classified as (a) concentrates: Contains mainly cereal grains and their by-products and is high in energy, or maybe prepared from high-protein oil meals or cakes, and by-products resulting from sugar beets and sugarcane processing (b) roughages: Comprises of grass pastures, and plant parts like hays, silage, root crops, straw, and stover. The feed diets provided to animals are all not the same. For example, livestock animals are fed on a diet that consists mainly of roughages while poultry, swine, and fish are fed with concentrates. Occasionally, the livestock may be fed with energy feeds which usually comes from grains, supplied alone or as part of a total mixed ration.


The quality of the prepared feed ultimately depends on the quality of the material such as the grain or grass used. To obtained high quality feed the raw material should be of very good quality. Feed manufacturing (commercial) is an industrial process, and therefore should follow HACCP procedures. The Food and Drugs Administration (FDA) defines HACCP as “a management system in which food safety is addressed through the analysis and control of biological, chemical, and physical hazards from raw material production, procurement and handling, to manufacturing, distribution and consumption of the finished product”.[3] The FDA is the regulator of human food and animal feed for animals including poultry, livestock, swine, and fish. Additionally, FDA regulates over 177 million dogs, cats, and horses pets feed in America. Similar to human foods, animal feeds require to be unadulterated and wholesome, and be prepared under good sanitary conditions. In accordance with the FDA, the feed should properly and truthfully be labeled to provide the required information to the consumer.[3]

Manufacture

Depending on the type of feed, the manufacturing process usually start with the grinding process. Grinding of selected raw material is to produce particle sizes to be optimally and easily accepted by the animals. Depending on the formulation, feed could contain up to 10 different component including carbohydrate, protein, vitamins, minerals and additives. The feed ration can be pelleted by proportionally homogenizing the specific compositions. Pelleting could be achieved by various methods, but the most common means is using extruder machine. Hygienic environment should not be compromised during the entire process of the feed production to ensure quality feed.

For swine

It has been reported that, “60% to 80% of the total cost of producing hogs is feed” (Rick, 1995; Myer and Brendemuhl, 2013). Feeds are not prepared just to provide daily stomach intake but also to enrich the animals with the requisite body nutrients for healthy growth. Formulating swine ration takes into consideration, the required nutrients for swine at various growing stages, and the required compositions of the feeds. According to Rick (1995), the basic nutrients of concern in practical swine diets are crude protein, metabolizable energy, minerals, vitamins and water. The formulation procedure of the ration has a composition that should be fixed and also a variable portion (Luce, 2013). Swine ration mostly comprises of a ground cereal grain as a carbohydrate source, a protein source mostly from soybean meal, mineral salts like calcium and phosphorus, and vitamins. The feed can be fortified with by-products of milk; meat by-products; cereal grain by-products; and specialty products. Myer and Brendemuhl (2013), discussed that antibiotics may also be added to swine feeds to fortify the feed and help improve the animal’s health growth. Rick (1995) reported of three basic methods used to formulate swine diets: Pearson square, algebraic equations and linear programs (computers). In recent times, microcomputer programs are available that will balance a diet for many nutrients and assist with economic decisions. Reports have indicated that Distillers dried grains with solubles (DDGS) is been used in place of corn and soybean meal in livestock and poultry feeds, which is rich in energy and protein (Bregendahl, 2008). Corn dried distillers grains with solubles (DDGS) has become the most popular, economical, and widely available alternative feed ingredient for use in U.S. swine diets in all phases of production. The U.S. Grain Council also reported that corn DDGS is used primarily as an energy source in swine diets because it contains approximately the same amount of digestible energy (DE) and metabolizable energy (ME) as corn, although the ME content may be slightly reduced when feeding reduced-oil DDGS (U.S Grains Council, 2012). Stein in 2007 also highlighted the recent trends in the use of DDGS, as many producers are successfully including 20% DDGS in diets of swine in all categories. Although 20% is the recommended level of inclusion, some producers are successfully using greater inclusion rates. Inclusion rate of up to 35% DDGS has successfully been used in diets fed to nursery pigs and growing finishing pigs (Stein, 2007).

For fish

In recent discussions, it was indicated that farmed fish are supplied with specially formulated pellet feeds containing the required nutrients to keep the fish very healthy and also to provide health benefits to humans that consume the fish. Fish can be classified depending on the feed source (animal or plant source) that they consume. Fish are broadly classified into herbivorous fish (feed source mainly of plant proteins like soy or corn, vegetable oils, minerals, and vitamins), and carnivorous fish (feed source mainly of fish oils and proteins). Carnivorous fish feeds basically contain 30-50% fish meal and oil; and recent research is suggesting the use of other alternatives to fishmeal in aquaculture diets (NOAA fisheries, 2015). A fish feed should be nutritionally well-balanced and provide a good energy source for better growth. It has been reported that among the various fish feeds investigated, soybean meal was better as an alternative to fishmeal. The soybean meal to be prepared for the fish industry is heavily dependent on the flour particle sizes which mostly depict the characteristics of the feed pellets. The particle sizes have influence on feed digestibility, and the possible effect that the fish’s digestive system may experience. The particle sizes to be used to produce the fish pellet feed are influenced by grain properties and the milling process. Properties of the grain may include, its hardness, and moisture content, and properties of the milling process may include the mill equipment type used, and some properties of the mill equipment (for example corrugations, gap, speed, and energy consumption).

For poultry

As reports have indicated, feeding make-up the major cost in raising poultry animals as birds in general require feeding more than any other animals did particularly due to their faster growth rate and high rate of productivity. Feeding efficiency is reflected on the birds’ performance and its products. According to National Research Council (1994), poultry required at least 38% components in their feed. The ration of each feed components, although differ for each different stage of birds, must include carbohydrates, fats, proteins, minerals and vitamins. Carbohydrates which is usually supply by grains including corn, wheat, barley, etc. serve as major energy source in poultry feeds. Fats usually from tallow, lard or vegetables oil are essentially required to provide important fatty acid in poultry feed for membrane integrity and hormone synthesis. Proteins are important to supply the essential amino acids for the development of body tissues like muscles, nerves, cartilage, etc. Meals from soybean, canola, and corn gluten are the major source of plant protein in poultry diets. Supplementations of minerals are often required because grains, which is the main components of commercial feed contain very little amount of those. Calcium, phosphorus, chlorine, magnesium, potassium, and sodium are required in larger amounts by poultry. Vitamins, such as vitamin A, B, C, D, E, and K on the other hand are the component that required in lower amount by poultry animals (Chiba, 2014).

Fanatico (2003) reported that the easiest and popular way to feed birds are to use pelleted feeds. Aside the convenience to the farmer, pelleted feeds enable the bird to eat more at a time. In addition to that, some researchers also found the improvement of feed conversion, decreasing feed wastage, improving palatability and destroying pathogens when birds were fed with pellet feed as compared to birds fed with mash feed (Jahan et al., 2006; Klasing, 2015). Commercial manufacturing of pelleted feed usually involves series of major processes including grinding, mixing and pelleting. The produced pellets are then tested for pellet durability index (PDI) to determine its quality. To enhance good health and growth, antibiotics are often added to the pelleted feed. Researchers have concluded that smaller particle-sized feed will improve digestion due to the increasing surface area for acid and enzyme digestion in the gastrointestinal tract (Preston et al., 2000). However, some researchers recently brought into the attention the necessity of coarse particle for poultry feed to complement the natural design and function of gastrointestinal tract (GIT). Hetland et al. (2002) and Svihus et al. (2004) discussed that the GIT retention time decreased due to lack of gizzard function that eventually gave negative impact on live performance. Zanotto & Bellaver (1996), compared the performance of 21 day old broilers fed with different feed particle size; 0.716 mm and 1.196 mm. They found that the subject fed with larger particle size feed showed better performance. Parsons et al. (2006), evaluating different corn particle sizes in the broiler feed found that the largest particle size (2.242 mm) gave better feed intake than the other particle sizes tested (0.781, 0.950, 1.042 and 1.109 mm). Nir et al. (1994) however argued that the development of broiler was influenced by changing particle sizes. However variation in particle size between 0.5-1 mm usually did not have any effect on the broilers. Very fine particles (<0.5 mm) may impair the broilers performance due to presence of dust that cause respiratory problems, increase water intake, feed presence in the drinkers and increase litter moisture (Benedetti et al., 2011). Chewning et al. (2012), in their recent study concluded that although fine particle sizes (0.27 mm) enhanced broilers live performance, the pelleted feed did not.

All of these data show that both fine and coarse particle sizes do have different function in the poultry feed. Appropriate proportion of these two ingredient must be used with respect to the live performance of the broilers. Xu et al. (2013), compared the performance of non-pelleted feed to pellet with fine particles and found that the addition of coarse particle improved feed conversion and body weight. Similar results were also obtained by other researchers like Auttawong et al. (2013) and Lin et al. (2013).

For livestock

Livestock include beef cattle, dairy cattle, horses, goats, sheep and llamas. There is no specific requirement of feed intake for each livestock because their feed continuously varies based on the animals’ age, sex, breed, environment, etc. However basic nutrient requirement of a livestock’s feed must consist of protein, carbohydrates, vitamins and minerals (Herdt, 2014). Dairy cattle need more energy in their feed than other type of cattle. Studies have shown that energy supplied by feed is provided by various carbohydrate sources include non-fiber carbohydrates (NFC) such as fermentable feeds or neutral detergent fiber (NDF) such as forage. Feeds with high NDF is good for rumen health, however provides less energy and vice versa. Fats are added in the livestock feed to increase energy concentration, especially when the NFC content is already too high since excessive NFC lessens the NDF fraction, affecting the rumen digestion. In ruminants, most proteins consumed are breakdown by microorganisms and the microorganism later get digested by the small intestine (Lalman D. Nutrient Requirements of Beef Cattle E-974). The N.R.C.N.R.B.C. publication (2000) suggested that the crude protein required in livestock feed should be less than 7%. Lactating ruminant especially dairy cattle require highest amount of protein, especially for milk synthesis. Minerals including calcium, phosphorus and selenium are required by livestock for maintaining growth, reproduction and bone health (Rayburn, 2009).

Like other animals, livestock also require appropriate proportions of fine and coarse particles in their feed. Theoretically, finer particle will be easier to digest in the rumen, however the presence of coarse particle might increase the amount of starch into small intestine thus increasing energetic efficiency (Secrist et al., OSU). Livestock could be fed by grazing on grasslands, integrated or non-integrated with crops production. Livestock that are grown in stalls or feedlots are landless and typically fed by processed feed containing veterinary drugs, growth hormones, feed additives, or nutraceuticals to improve production effectiveness (Silbergeld, 2008). Similarly, livestock are consuming grains as the main feed or as additional nutrient to the forage based feed. Processing grains for feed is aimed to get the easiest digestible grains to maximize starch availability, thus increasing the energy supply.

Hutjens (1999) reported that milk performance was significantly better when the cattle were fed with ground corn. Aldrich (Akey Inc.) compared digestibility of various corn particle size and distribution and conclude that to have 80% digestibility, particle size of 0.5 mm should be used (for 16 hr incubation) (Hutjens and Dann, University of Illinois). A research team from the University of Maryland and USDA studied the development, fermentation in rumen and starch digestion sites in lactation cow feeding on corn grain from different harvests and differently processed, and concluded that digestible, metabolizable, and heat energy were higher for high moisture corn compared to dry corn. Grinding increased DMI and resulted in increased yields of milk, protein, lactose, and solids non-fat.

References

  1. ^ Commercial Feed License, Pet Food Registration and Inspection Fee Reporting. Washington State Department of Agriculture. agr.wa.gov/foodanimal/animalfeed/
  2. ^ a b Texas Administrative Code Title 4. Agriculture Chapter 61, Commercial Feed Rules. Adopted by the Texas Feed and Fertilizer Control Service under the Texas Agriculture Code (1981). Amended May 19, 2011, pp. 5.
  3. ^ a b Hazard Analysis Critical Control Point (HACCP). Department of Health and Human Services, Food and Drug Administration. http://www.fda.gov/Food/GuidanceRegulation/HACCP/ Cite error: The named reference "fda2015" was defined multiple times with different content (see the help page).
References
reference list
The following discussion has been closed. Please do not modify it.
  • Amerah, A.M., Ravindran, V., Lentle, R.G. and Thomas, D.G. 2007. Feed particle size: Implications on the digestion and performance of poultry. World’s Poultry Science Journal, 63: 439-445.
  • ASAE. 1983. Method of determining and expressing fineness of feed materials by sieving. American Society of Agricultural Engineers Standard S319.2. Yearbook of Standards, American Society of Agricultural Engineers, St. Joseph, MO.
  • Auttawong, S., Brake, J., Stark, C. and Yahav, S. 2013. Time-limited feeding of grower feed negates the effects of corn particle size, dietary energy level, and post-pellet liquid fat application on broiler live performance from 14 to 28 days of age. Poult. Sci. 92 (ESuppl. 1):32. (Abstr.). Presented at PSA Annual Meeting, San Diego, CA.
  • Benedetti, M.P., Sartori, J.R., Carvalho, F.B., Pereira, L.A., Fascina, V.B., Stradiotti, A.C., Pezzato, A., Costa, C and Ferreira, J.G. 2011. Corn texture and particle size in broiler diets. Rev. Bras. Cienc. Avic. 13(4)
  • Bregendahl, K. 2008. “Use of Distillers Co-products in Diets Fed to Poultry,” Using Distillers Grains in the U.S. and International Livestock and Poultry Industries, Midwest Agribusiness Trade Research and Information Center at the Center for Agricultural and Rural Development, Iowa State University, pp. 99-133. Retrieved from http://www.card.iastate.edu/books/distillers_ grains/pdfs/chapter5.pdf.
  • Carre, B., Muley, N., Gomez, J., Ouryt, F.X., Lafittee, E., Guillou, D. and Signoret, C. 2005. Soft wheat instead of hard wheat in pelleted diets results in high starch digestibility in broiler chickens. British Poultry Science 46: 66-74.
  • Chewning, C.G., Stark, C.R. and Brake, J. 2012. Effects of particle size and feed form on broiler performance. J. Appl. Poult. Res. 21: 830-837.
  • Chiba, L.I. 2014. Poultry nutrition and feeding. In: Animal Nutrition Handbook. pp 410-425. Retrieved from http://www.ag.auburn.edu/~chibale/an12poultryfeeding.pdf
  • Fanatico, A. 10 January 2003. Feeding Chickens for best health and performance. National Center for Appropriate Technology (NCAT). February 1998. Retrieved from http://www.thepoultrysite.com/articles/94/feeding-chickens-for-best-health-and-performance
  • FDA. 2015. Hazard Analysis Critical Control Point (HACCP). Department of Health and Human Services, Food and Drug Administration. http://www.fda.gov/Food/GuidanceRegulation/HACCP/
  • FDA. 2014. FDA 101: Animal Feed. Department of Health and Human Services, Food and Drug Administration. http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm164473.htm
  • Goodbrand, R.D., Tokach, M.D. and Nelssen, J.L. 2002. The effects of diet particle size on animal performance. MF-2050 Feed Manufacturing, Department of Grain Science and Industry, Kansas State University. 6 pp.
  • Hetland, H., Svihus, B. and Olaisen, V. 2002. Effect of feeding whole cereals on performance, starch digestibility and duodenal particle size distribution in broiler chickens. Br Poult Sci, 43:416–423
  • Herdt, T.H. October 2014. Nutritional Requirements of Dairy Cattle. Retrieved from http://www.merckvetmanual.com/mvm/management_and_nutrition/nutrition_dairy_cattle/nutritional_requirements_of_dairy_cattle.html
  • Hutjens, M.F. 1999. Ration physical form and rumen health. Four-State Dairy Management Seminar Proceedings. p. 1-3.
  • Hutjens, M. and Dann, H. GRAIN PROCESSING: IS IT TOO COARSE OR TOO FINE?. Department of Animal Sciences University of Illinois.
  • Jahan, M.S., Asaduzzaman, M. and Sarkar, A.K. 2006. Performance of broiler fed on mash, pellet and crumble. Int J Poult Sci, 5:265–270.
  • Klasing, K.C. May 2015. Nutritional Requirements of Poultry. Retrieved from http://www.merckvetmanual.com/mvm/poultry/nutrition_and_management_poultry/nutritional_requirements_of_poultry.html
  • Koch, K. 1996. Hammermills and rollermills. MF-2048 Feed Manufacturing, Department of Grain Science and Industry, Kansas State University. 8 pp.
  • Lalman, D. Nutrient Requirements of Beef Cattle E-974. Division of Agricultural Sciences and Natural Resources, Oklahoma State University. Retrieved from http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-1921/E-974web.pdf
  • Luce, W.G. 2013. Formulating Swine Rations. ANSI-3501- Oklahoma Cooperative Extension Service, Division of Agricultural Sciences and Natural Resources, Oklahoma State University.
  • Lucas G.M. 2004. Dental Functional Morphology. Cambridge University Press. Cambridge, UK.
  • Lin, Y.M., Stark, C.R. and Brake, J. 2013. Effect of a severely restricted feed program at the onset of lay and corn particle size on performance of three weight classes of broiler breeders. Poult. Sci. 92 (E-Suppl. 1):63. Presented at PSA Annual Meeting, San Diego, CA.
  • Martin, S. 1985. Comparison of hammer mill and roller mill grinding and the effect of grain particle size on mixing and pelleting. Master’s Thesis, Kansas State University, Kansas.
  • Myer, R.O. and Brendemuhl, J.H. 2013. 4H Project Guide: Swine Nutrition. 4H22-Animal Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Revised April 2009 and June 2013, pp. 1-2. http://edis.ifas.ufl.edu.
  • National Research Council. 1994. Nutrient Requirements for Poultry. No. 1, 9th Edition. National Academy of Science, Washington, DC. 155 p.
  • Nir, I., Hillel, R., Shefet, G. and Nitzan, Z. 1994. Effect of grain particle size on performance. 2. Grain texture interactions. Poultry Science 73:781-791.
  • Nir, I. and Ptichi, I. 2001. Feed particle size and hardness: Influence on performance, nutritional, behavioral and metabolic aspects. In: Proceedings of the 1st World Feed Conference, Utrecht, the Netherlands, pp 157-186.
  • NOAA Fisheries. 2015. Feeds for Aquaculture. National Oceanic and Atmospheric Administration. http://www.nmfs.noaa.gov/aboutus/contactus.html
  • Nutrient Requirements of Beef Cattle: Seventh Revised Edition: Update 2000 (2000). NATIONAL ACADEMY PRESS. Washington, D.C.
  • Oguntimein, G.B. Processing cassava for animal feeds. In: Cassava as livestock feed in Africa. Proceedings of the IITA/ILCA/University of Ibadan Workshop on the Potential Utilization of Cassava as Livestock Feed in Africa 14-18 November 1988, Ibadan, Nigeria. Copyright 1992, International Institute of Tropical Agriculture.
  • Parsons, A.S., Buchanan, N.P., Blemings, K.P., Wilson, M.E., and Moritz, J.S. 2006. Effect of corn particle size and pellet texture on broiler performance in the growing phase. Division of Animal and Veterinary Sciences, West Virginia University. Poultry Science Association, Inc.
  • Preston, C.M., McCracken, K.J. and McAllister, A. 2000. Effect of diet form and enzyme supplementation on growth, efficiency and energy utilisation of wheat-based diets for broilers. Br Poult Sci, 41:324–331.
  • Rayburn, E.B. Sept 2009. Nutrient Requirements for Beef Cattle. West Virginia University. Retrieved from https://www.wvu.edu/~agexten/forglvst/Nutrient_Requirements_Beef%20Cattle_September_2009.pdf
  • Rick, J. 1995. Practical Swine Feeding Ideas. The University of Georgia College of Agricultural & Environmental Sciences Cooperative Extension Service. Bulletin 854/Revised May, 1995.
  • Rose, S.P., Tucker, L.A., Kettlewell, P.S. and Collier, J.D.A. 2001. Rapid tests of wheat nutritive value for growing chickens. Journal of Cereal Science 34: 181-190.
  • Secrist, D.S., Hill, W.J., Owens, F.N. and Welty, S.D. Effect of corn particle size on feedlot steer performance and carcass characteristics. Research Report. Oklahoma State University. Retrieved from http://www.ansi.okstate.edu/research/research-reports-1/1995/1995-1%20Secrist.pdf
  • Silbergeld, E.K., Jay, G. and Price, L.B. 2008. Industrial food animal production, antimicrobial resistance, and human health. Annual Review of Public Health 29: 151–169
  • Svihus, B., Klozstad, K.H., Perez, V., Zimonja, O., Sahlstorm, S. and Schuller, R.B. 2004. Physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarsenesses by the use of roller mill and hammer mill. Animal Feed Science and Technology 117: 281-293.
  • Stein, H.H. 2007. Recommendations on Feeding DDGS to Swine. The Pigs Site, February 2007. http://www.thepigsite.com
  • TAC. 2011. Texas Administrative Code Title 4. Agriculture Chapter 61, Commercial Feed Rules. Adopted by the Texas Feed and Fertilizer Control Service under the Texas Agriculture Code (1981). Amended May 19, 2011, pp. 5.
  • U.S Grain Council. 2012. A Guide to Distiller’s Dried Grains with Solubles (DDGS). 3rd Ed: Chapter 21-Use of DDGS in Swine Diets, p.1. https://www.grains.org/sites/default/files/ddgs-handbook/Complete%202012%20DDGS%20Handbook.pdf
  • Waldroup, P. W. 1997. Particle Size Reduction of Cereal Grains and its Significance in Poultry Nutrition. Technical Bulletin PO34-1997. American Soybean Association, Singapore. 14 pp.
  • WSDA. 2016. Commercial Feed License, Pet Food Registration and Inspection Fee Reporting. Washington State Department of Agriculture. agr.wa.gov/foodanimal/animalfeed/
  • Xu, Y., Stark, C., Ferket, P. and Brake, J. 2013. Effect of roller mill ground corn inclusion and floor types on gastric development, liver performance, and litter moisture in broilers. Poult. Sci. 92 (E-Suppl. 1):65. Presented at PSA Annual Meeting, San Diego, CA.
  • Zanotto, D.L. and Bellaver, C. 1996. Método de determinação da granulometria para uso em rações de suínos e aves. Concórdia: EMBRAPA, CNPSA 5.

-- Jytdog (talk) 09:09, 6 May 2016 (UTC)[reply]

I believe this content, originally posted at Feed manufacturing, is entirely too detailed to be included as a section of this article. I believe that a link from here to Feed manufacturing is much more appropriate. The author of this content has done extensive, well-documented research into the manufacture of feed for various key livestock categories. I believe the material is relevant and worth keeping and improving, in its original location. WikiDan61ChatMe!ReadMe!! 13:18, 6 May 2016 (UTC)[reply]
WikiDan has reverted the merge/redirect at the other article, so this is now moot. Jytdog (talk) 17:18, 6 May 2016 (UTC)[reply]
Hmmm. Is everyone aware that we also have another overview article, fodder? (Also, animal nutrition). Wondering how to have these articles work together -- I agree that merging isn't the solution, but it's also important that they cross-link so we don't wind up with 15,000,000 articles on basically the same set of concepts. Montanabw(talk) 20:22, 8 May 2016 (UTC)[reply]

External links modified[edit]

Hello fellow Wikipedians,

I have just modified one external link on Animal feed. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:

When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.

This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}} (last update: 18 January 2022).

  • If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
  • If you found an error with any archives or the URLs themselves, you can fix them with this tool.

Cheers.—InternetArchiveBot (Report bug) 22:10, 12 January 2017 (UTC)[reply]

unsourced[edit]

The following is unsourced and was moved here per WP:PRESERVE. Per WP:BURDEN please do not restore without finding independent, reliable sources, checking the content against them, and citing them, and ensuring that this content has appropriate WP:WEIGHT in the article overall.

Manufacturer

The job of the feed manufacturer is to buy the commodities and blend them in the feed mill according to the specifications outlined by the animal nutritionist. There is little room for error because, if the ration is not apportioned correctly, lowered animal production and diminished outward appearance can occur.

Asia

One of the largest Asian feed producers is Charoen Pokphand (the CP Group), a Thai company producing 18 million tonnes of compound feed at various locations across East Asia.[citation needed]

Europe

The merge of the Hamburg-based traditional commodity trade firm, Cremer, and the Düsseldorf based Deuka (Deutsche Kraftfutterwerke), led to one of the largest feed companies in Europe. The new Cremer Group produces around 3.5 million tons. BOCM Pauls in the UK produces around the same amount if not more.

United States
Feed production facility in Oneonta, New York

Leading U.S. companies involved in prepared feeds production in the early first decade of the 21st century included ConAgra Inc., an Omaha, Nebraska-based firm; and Cargill, Incorporated, a diversified company that was the nation's top exporter of grain. In 1998, Ralston Purina Company, based in St. Louis, Missouri, formed Agribrands International, Inc. to control its international animal feed and agricultural products division. Agribrands produced feed and other products for livestock in markets outside of the United States, and had about 75 facilities operating in 16 countries. In 2001, it was acquired by Cargill.

Other significant industry players included Conti Group Companies, Inc., the world's leading cattle feeder; CHS, Inc. (previously known as Cenex Harvest States Cooperative), which was primarily involved in grain trading; and Farmland Industries, Inc., the leading agricultural cooperative in the United States. Farmland was a worldwide exporter of products, such as grain. In May 2002, the firm declared bankruptcy, and in the following year, Smithfield Foods acquired most of Farmland's assets.

-- Jytdog (talk) 21:50, 14 October 2017 (UTC)[reply]

Recent edits re: alternatives to antibiotic use[edit]

To @Ramimbau::

1st) I am personally requesting you to disclose any conflict of interest you may have regarding your recent edits.

2nd) I've noticed that you have made repeated edits across multiple Wiki pages that have been undone by myself or other users including Animal Feed, Antimicrobial peptides, Poultry feed, and Cross-resistance. The article you have attempted to paste across Wikipedia was flagged for WP:RS with the reason given being it is published in an MDPI journal (originally flagged by @Zefr: on the Antimicrobial peptides page). This was not a closed case, and you can dispute the reliability of the source on an article talk page (like this one), or on another user's User page.

It is not appropriate to dodge this warning by instead using the ResearchGate secondary source to make it seem like an alternate source. It is especially not appropriate to try to make the same edits using non-account IP addresses trying to subvert due process.

If you want to make an argument why this article you've repeatedly attempted to add is a WP:RS, and is the appropriate source to cite for claims being made you can do so here.

Best, Crawdaunt (talk) 15:42, 20 June 2022 (UTC)[reply]