Предикат ( математическая логика)

редактировать
Центральное понятие математической логики

В математической логике предикат обычно понимается как булевозначная функция P: X → {true, false}, называемая предикатом на X. Однако предикаты имеют много разных применений и интерпретаций в математике и логике, и их точное определение, значение и использование будут варьироваться от теории к теории. Например, когда теория определяет понятие отношения , предикат просто становится характеристической функцией (иначе известной как индикаторная функция ) отношения. Однако не все теории имеют отношения или основаны на теории множеств, поэтому нужно быть осторожным с правильным определением и семантической интерпретацией предиката.

Содержание
  • 1 Упрощенный обзор
  • 2 Формальное определение
  • 3 См. Также
  • 4 Ссылки
  • 5 Внешние ссылки
Упрощенный обзор

Неформально, предикат, часто обозначается заглавными римскими буквами, например P {\ displaystyle P}P , Q {\ displaystyle Q}Q и R {\ displaystyle R}R - это утверждение, которое может быть истинным или ложным в зависимости от значений его переменных. Его можно рассматривать как оператор или функцию, которая возвращает значение, которое является истинным или ложным в зависимости от его ввода. Например, предикаты иногда используются для обозначения членства в множестве: когда мы говорим о множествах, иногда неудобно или невозможно описать набор, перечислив все его элементы. Таким образом, предикат P (x) будет истинным или ложным, в зависимости от того, принадлежит ли x множеству или нет.

Предикат может быть предложением, если заполнитель x определен доменом или выбором.

Предикаты также обычно используются, чтобы говорить о свойствах объектов, определяя набор всех объектов, которые имеют какое-то общее свойство. Например, когда P является предикатом X, иногда можно сказать, что P является свойством X. Точно так же обозначение P (x) используется для обозначения предложения или утверждения P относительно переменного объекта x.. Множество, определяемое P (x), также называемое расширением P, записывается как {x | P (x)}, а это набор объектов, для которых P истинно.

Например, {x | x - целое положительное число меньше 4} - это множество {1,2,3}.

Если t является элементом множества {x | P (x)}, то верно утверждение P (t).

Здесь P (x) называется предикатом, а x - заполнителем предложения . Иногда P (x) также называют (шаблоном в роли) пропозициональной функции, поскольку каждый выбор заполнителя x порождает предложение.

Простая форма предиката - это логическое выражение, и в этом случае входные данные выражения сами являются логическими значениями, объединенными с использованием логических операций. Точно так же логическое выражение с предикатами входных данных само по себе является более сложным предикатом.

Формальное определение

Точная семантическая интерпретация атомарной формулы и атомарного предложения будет варьироваться от теории к теории.

См. Также
Ссылки
Внешние ссылки
Последняя правка сделана 2021-06-02 04:28:50
Содержание доступно по лицензии CC BY-SA 3.0 (если не указано иное).
Обратная связь: support@alphapedia.ru
Соглашение
О проекте