Правила трансформации |
---|
Исчисление высказываний |
Правила вывода |
Правила замены |
Логика предикатов |
Правила вывода |
В логике высказываний, модус Толленс ( / м oʊ д ə с т ɒ л ɛ п г / ) ( МТ), также известный как модус tollendo Толленс ( латинский для «способа удаления, убирая») и отрицание консеквента, является дедуктивной формой аргумента и правилом вывода. Modus tollens принимает форму «Если P, то Q. Не Q. Следовательно, не P.» Это приложение общей истины о том, что если утверждение истинно, то также и его противоположность. Форм - показывает, что вывод из P подразумевает Q к отрицанию Q означает отрицание Р является действительным аргументом.
История правила вывода modus tollens восходит к глубокой древности. Первым, кто явно описал аргумент modus tollens, был Теофраст.
Modus tollens тесно связан с modus ponens. Есть две похожие, но недействительные формы аргументации : подтверждение следствия и отрицание антецедента. См. Также противопоставление и доказательство контрапозитивом.
Форма аргумента modus tollens напоминает силлогизм с двумя предпосылками и выводом:
Первая посылка является условным ( «если-то») претензии, такие как P влечет Q. Вторая посылка - это утверждение, что Q, следствие условного утверждения, не так. Из этих двух посылок можно логически заключить, что P, антецедент условного требования, также не соответствует действительности.
Например:
Если предположить, что обе предпосылки верны (собака будет лаять, если обнаружит злоумышленника, и действительно не лает), отсюда следует, что злоумышленник не был обнаружен. Это верный аргумент, поскольку заключение не может быть ложным, если посылки верны. (Вполне возможно, что здесь мог быть злоумышленник, которого собака не обнаружила, но это не отменяет аргументацию; первая предпосылка - «если собака обнаруживает злоумышленника». Важно то, что собака обнаруживает или делает не обнаруживать злоумышленника, а не то, есть ли он.)
Другой пример:
Другой пример:
Любое использование modus tollens может быть преобразовано в использование modus ponens и одно использование транспонирования в предпосылку, что является материальным подтекстом. Например:
Точно так же любое использование modus ponens может быть преобразовано в использование modus tollens и транспонирования.
В Modus Толленс правило можно сформулировать формально как:
где означает утверждение "P влечет Q". означает «дело не в том, что Q» (или, вкратце, «не в Q»). Затем, всякий раз, когда " " и " " появляются сами по себе как строка доказательства, тогда " " может быть действительно помещен в следующую строку.
В Modus Толленс правило может быть записано в секвенции записи:
где представляет собой металогическое символ, означающее, что является синтаксическим следствием из и в какой - то логической системе ;
или как утверждение функциональной тавтологии или теоремы логики высказываний:
где и суждения, выраженные в некоторой формальной системе ;
или включая предположения:
хотя, поскольку правило не меняет набор предположений, в этом нет строгой необходимости.
Часто можно увидеть более сложные переписывания, включающие modus tollens, например, в теории множеств :
(«P является подмножеством Q. x не находится в Q. Следовательно, x не находится в P.»)
Также в логике предикатов первого порядка:
(«Для всех x, если x является P, то x является Q. y не является Q. Следовательно, y не является P.»)
Строго говоря, это не примеры modus tollens, но они могут быть получены из modus tollens, используя несколько дополнительных шагов.
Обоснованность modus tollens может быть ясно продемонстрирована с помощью таблицы истинности.
п | q | p → q |
---|---|---|
Т | Т | Т |
Т | F | F |
F | Т | Т |
F | F | Т |
В случаях modus tollens мы предполагаем в качестве посылки, что p → q истинно, а q ложно. Только одна строка таблицы истинности - четвертая строка - удовлетворяет этим двум условиям. В этой строке p ложно. Следовательно, в каждом случае, когда p → q истинно, а q ложно, p также должно быть ложным.
Шаг | Предложение | Вывод |
---|---|---|
1 | Данный | |
2 | Данный | |
3 | Материальное значение (1) | |
4 | Дизъюнктивный силлогизм (3,2) |
Шаг | Предложение | Вывод |
---|---|---|
1 | Данный | |
2 | Данный | |
3 | Предположение | |
4 | Модус поненс (1,3) | |
5 | Введение конъюнкции (2,4) | |
6 | Reductio ad absurdum (3,5) | |
7 | Условное введение (2,6) |
Шаг | Предложение | Вывод |
---|---|---|
1 | Данный | |
2 | Данный | |
3 | Противопоставление (1) | |
4 | Modus ponens (2,3) |
Modus tollens представляет собой пример закона полной вероятности в сочетании с теоремой Байеса, выраженный как:
,
где условные выражения и получены с помощью (расширенной формы) теоремы Байеса, выраженной как:
и.
В приведенных выше уравнениях обозначает вероятность и обозначает базовую ставку (также известную как априорная вероятность ). Условная вероятность того, обобщает логическое утверждение, то есть в дополнение к присвоению ИСТИНА или ЛОЖЬ мы можем также назначить любую вероятность заявления. Предположим, что это эквивалентно ИСТИННО, и это эквивалентно ЛОЖЬ. Тогда легко увидеть, что когда и. Это потому, что в последнем уравнении. Следовательно, члены продукта в первом уравнении всегда имеют нулевой множитель, что эквивалентно ЛОЖНОСТИ. Следовательно, закон полной вероятности в сочетании с теоремой Байеса представляет собой обобщение modus tollens.
Modus tollens представляет собой пример оператора абдукции в субъективной логике, выраженный как:
,
где обозначает субъективное мнение о и обозначает пару биномиальных условных мнений, выраженных источником. Параметр обозначает базовую ставку (также известную как априорная вероятность ). Abduced маргинальное мнение о обозначается. Условное мнение обобщает логическое утверждение, т. Е. В дополнение к присвоению ИСТИНА или ЛОЖЬ источник может присвоить утверждению любое субъективное мнение. Случай, когда является абсолютно ИСТИННЫМ мнением, эквивалентен тому, что источник говорит, что это ВЕРНО, а случай, когда это абсолютно ЛОЖНОЕ мнение, эквивалентно источнику, говорящему, что оно ЛОЖНО. Похищение оператор из субъективной логики дает абсолютную ЛОЖЬ abduced мнение, когда условное мнение является абсолютной истиной, и, как следствие, мнение является абсолютной ЛОЖЬЮ. Следовательно, абдукция субъективной логики представляет собой обобщение как modus tollens, так и закона полной вероятности в сочетании с теоремой Байеса.